Hide metadata

dc.date.accessioned2021-05-19T15:58:36Z
dc.date.available2021-05-19T15:58:36Z
dc.date.created2021-05-16T21:19:40Z
dc.date.issued2021
dc.identifier.citationXu, Kaiqi Chatzitakis, Athanasios Eleftherios Backe, Paul Hoff Ruan, Qiushi Junwang, Tang Rise, Frode Bjørås, Magnar Norby, Truls Eivind . In situ cofactor regeneration enables selective CO2 reduction in a stable and efficient enzymatic photoelectrochemical cell. Applied Catalysis B: Environmental. 2021
dc.identifier.urihttp://hdl.handle.net/10852/86199
dc.description.abstractMimicking natural photosynthesis by direct photoelectrochemical (PEC) reduction of CO2 to chemicals and fuels requires complex cell assemblies with limitations in selectivity, efficiency, cost, and stability. Here, we present a breakthrough cathode utilizing an oxygen tolerant formate dehydrogenase enzyme derived from clostridium carboxidivorans and coupled to a novel and efficient in situ nicotinamide adenine dinucleotide (NAD+/NADH) regeneration mechanism through interfacial electrochemistry on g-C3N4 films. We demonstrate stable (20 h) aerobic PEC CO2-to-formate reduction at close to 100 % faradaic efficiency and unit selectivity in a bio-hybrid PEC cell of minimal engineering with optimized Ta3N5 nanotube photoanode powered by simulated sunlight with a solar to fuel efficiency of 0.063 %, approaching that of natural photosynthesis.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleIn situ cofactor regeneration enables selective CO2 reduction in a stable and efficient enzymatic photoelectrochemical cell
dc.typeJournal article
dc.creator.authorXu, Kaiqi
dc.creator.authorChatzitakis, Athanasios Eleftherios
dc.creator.authorBacke, Paul Hoff
dc.creator.authorRuan, Qiushi
dc.creator.authorJunwang, Tang
dc.creator.authorRise, Frode
dc.creator.authorBjørås, Magnar
dc.creator.authorNorby, Truls Eivind
cristin.unitcode185,15,17,0
cristin.unitnameSenter for materialvitenskap og nanoteknologi
cristin.ispublishedfalse
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1910296
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Applied Catalysis B: Environmental&rft.volume=&rft.spage=&rft.date=2021
dc.identifier.jtitleApplied Catalysis B: Environmental
dc.identifier.volume296
dc.identifier.doihttps://doi.org/10.1016/j.apcatb.2021.120349
dc.identifier.urnURN:NBN:no-88852
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0926-3373
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/86199/5/1-s2.0-S0926337321004756-main.pdf
dc.type.versionPublishedVersion
cristin.articleid120349
dc.relation.projectNFR/250261
dc.relation.projectNFR/226244
dc.relation.projectEC/H2020/856446
dc.relation.projectNFR/288320


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International