Hide metadata

dc.date.accessioned2022-09-05T15:55:33Z
dc.date.available2022-09-05T15:55:33Z
dc.date.created2022-08-22T09:38:47Z
dc.date.issued2022
dc.identifier.citationBreysse, Patrick C. Chung, Dongwoo T. Cleary, Kieran A. Ihle, Håvard Tveit Padmanabhan, Hamsa Silva, Marta Bruno Bond, J. Richard Borowska, Jowita Catha, Morgan Church, Sarah E. Dunne, Delaney A. Eriksen, Hans Kristian Kamfjord Foss, Marie Kristine Gaier, Todd Gundersen, Joshua Ott Harris, Andrew I. Hobbs, Richard Keating, Laura Lamb, James W. Lawrence, Charles R. Lunde, Jonas Gahr Sturtzel Murray, Norman Pearson, Timothy J. Philip, Liju Rasmussen, Maren Readhead, Anthony C. S. Rennie, Thomas J. Stutzer, Nils-Ole Viero, Marco P. Watts, Duncan Wehus, Ingunn Kathrine Woody, David P. . COMAP Early Science. VII. Prospects for CO Intensity Mapping at Reionization. The Astrophysical Journal (ApJ). 2022, 933(2)
dc.identifier.urihttp://hdl.handle.net/10852/96047
dc.description.abstractWe introduce COMAP-EoR, the next generation of the Carbon Monoxide Mapping Array Project aimed at extending CO intensity mapping to the Epoch of Reionization. COMAP-EoR supplements the existing 30 GHz COMAP Pathfinder with two additional 30 GHz instruments and a new 16 GHz receiver. This combination of frequencies will be able to simultaneously map CO(1–0) and CO(2–1) at reionization redshifts (z ∼ 5–8) in addition to providing a significant boost to the z ∼ 3 sensitivity of the Pathfinder. We examine a set of existing models of the EoR CO signal, and find power spectra spanning several orders of magnitude, highlighting our extreme ignorance about this period of cosmic history and the value of the COMAP-EoR measurement. We carry out the most detailed forecast to date of an intensity mapping cross correlation, and find that five out of the six models we consider yield signal to noise ratios (S/Ns) ≳ 20 for COMAP-EoR, with the brightest reaching a S/N above 400. We show that, for these models, COMAP-EoR can make a detailed measurement of the cosmic molecular gas history from z ∼ 2–8, as well as probe the population of faint, star-forming galaxies predicted by these models to be undetectable by traditional surveys. We show that, for the single model that does not predict numerous faint emitters, a COMAP-EoR-type measurement is required to rule out their existence. We briefly explore prospects for a third-generation Expanded Reionization Array (COMAP-ERA) capable of detecting the faintest models and characterizing the brightest signals in extreme detail.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleCOMAP Early Science. VII. Prospects for CO Intensity Mapping at Reionization
dc.title.alternativeENEngelskEnglishCOMAP Early Science. VII. Prospects for CO Intensity Mapping at Reionization
dc.typeJournal article
dc.creator.authorBreysse, Patrick C.
dc.creator.authorChung, Dongwoo T.
dc.creator.authorCleary, Kieran A.
dc.creator.authorIhle, Håvard Tveit
dc.creator.authorPadmanabhan, Hamsa
dc.creator.authorSilva, Marta Bruno
dc.creator.authorBond, J. Richard
dc.creator.authorBorowska, Jowita
dc.creator.authorCatha, Morgan
dc.creator.authorChurch, Sarah E.
dc.creator.authorDunne, Delaney A.
dc.creator.authorEriksen, Hans Kristian Kamfjord
dc.creator.authorFoss, Marie Kristine
dc.creator.authorGaier, Todd
dc.creator.authorGundersen, Joshua Ott
dc.creator.authorHarris, Andrew I.
dc.creator.authorHobbs, Richard
dc.creator.authorKeating, Laura
dc.creator.authorLamb, James W.
dc.creator.authorLawrence, Charles R.
dc.creator.authorLunde, Jonas Gahr Sturtzel
dc.creator.authorMurray, Norman
dc.creator.authorPearson, Timothy J.
dc.creator.authorPhilip, Liju
dc.creator.authorRasmussen, Maren
dc.creator.authorReadhead, Anthony C. S.
dc.creator.authorRennie, Thomas J.
dc.creator.authorStutzer, Nils-Ole
dc.creator.authorViero, Marco P.
dc.creator.authorWatts, Duncan
dc.creator.authorWehus, Ingunn Kathrine
dc.creator.authorWoody, David P.
cristin.unitcode185,15,3,0
cristin.unitnameInstitutt for teoretisk astrofysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin2044808
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The Astrophysical Journal (ApJ)&rft.volume=933&rft.spage=&rft.date=2022
dc.identifier.jtitleThe Astrophysical Journal (ApJ)
dc.identifier.volume933
dc.identifier.issue2
dc.identifier.pagecount18
dc.identifier.doihttp://doi.org/10.3847/1538-4357/ac63c9
dc.identifier.urnURN:NBN:no-98542
dc.subject.nviVDP::Astrofysikk, astronomi: 438
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0004-637X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/96047/1/Breysse_2022_ApJ_933_188.pdf
dc.type.versionPublishedVersion
cristin.articleid188


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International