Hide metadata

dc.date.accessioned2022-03-12T18:14:13Z
dc.date.available2022-03-12T18:14:13Z
dc.date.created2021-09-24T15:41:41Z
dc.date.issued2021
dc.identifier.citationDziadkowiec, Joanna Ban, Matea Javadi, Shaghayegh Jamtveit, Bjørn Røyne, Anja . Ca2+ ions decrease adhesion between two (104) calcite surfaces as probed by Atomic Force Microscopy. ACS Earth and Space Chemistry. 2021, 5(10), 2827-2838
dc.identifier.urihttp://hdl.handle.net/10852/92389
dc.description.abstractSolution composition-sensitive disjoining pressure acting between the mineral surfaces in fluid-filled granular rocks and materials controls their cohesion, facilitates the transport of dissolved species, and may sustain volume-expanding reactions leading to fracturing or pore sealing. Although calcite is one of the most abundant minerals in the Earth’s crust, there is still no complete understanding of how the most common inorganic ions affect the disjoining pressure (and thus the attractive or repulsive forces) operating between calcite surfaces. In this atomic force microscopy study, we measured adhesion acting between two cleaved (104) calcite surfaces in solutions containing low and high concentrations of Ca2+ ions. We detected only low adhesion between calcite surfaces, which was weakly modulated by the varying Ca2+ concentration. Our results show that the more hydrated calcium ions decrease the adhesion between calcite surfaces with respect to monovalent Na+ at a given ionic strength, and thus Ca2+ can sustain relatively thick water films between contacting calcite grains even at high overburden pressures. These findings suggest a possible loss of cohesion and continued progress of reaction-induced fracturing for weakly charged minerals in the presence of strongly hydrated ionic species.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleCa2+ ions decrease adhesion between two (104) calcite surfaces as probed by Atomic Force Microscopy
dc.typeJournal article
dc.creator.authorDziadkowiec, Joanna
dc.creator.authorBan, Matea
dc.creator.authorJavadi, Shaghayegh
dc.creator.authorJamtveit, Bjørn
dc.creator.authorRøyne, Anja
cristin.unitcode185,15,4,0
cristin.unitnameFysisk institutt
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1938385
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS Earth and Space Chemistry&rft.volume=5&rft.spage=2827&rft.date=2021
dc.identifier.jtitleACS Earth and Space Chemistry
dc.identifier.volume5
dc.identifier.issue10
dc.identifier.startpage2827
dc.identifier.endpage2838
dc.identifier.doihttps://doi.org/10.1021/acsearthspacechem.1c00220
dc.identifier.urnURN:NBN:no-94977
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2472-3452
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/92389/1/acsearthspacechem.1c00220.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/286733


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International