Hide metadata

dc.date.accessioned2022-02-26T16:19:54Z
dc.date.available2022-02-26T16:19:54Z
dc.date.created2021-06-25T12:41:10Z
dc.date.issued2021
dc.identifier.citationĆwieka, K. Lysik, A. Wejrzanowski, T. Norby, Truls Eivind Xing, Wen . Microstructure and electrochemical behavior of layered cathodes for molten carbonate fuel cell. Journal of Power Sources. 2021, 500
dc.identifier.urihttp://hdl.handle.net/10852/91568
dc.description.abstractIn the present paper, we demonstrate how modifications of the microstructure and the chemical composition can influence the electrochemical behavior of cathodes for molten carbonate fuel cells (MCFCs). Based on our experience, we designed new MCFC cathode microstructures combining layers made of porous silver, nickel oxide or nickel foam to overcome common issues with the internal resistance of the cell. The microstructures of the standard NiO cathode and manufactured cathodes were extensively investigated using scanning electron microscopy (SEM) and porosity measurements. The electrochemical behavior and overall cell performance were examined by means of electrochemical impedance spectroscopy and single-cell tests in operation conditions. The results show that a porous silver layer tape cast onto standard NiO cathode and nickel foam used as a support layer for tape cast NiO porous layer substantially decrease resistance components representing charge transfer and mass transport phenomena, respectively. Therefore, it is beneficial to combine them into a three-layer cathode since it facilitates separation of predominant physio-chemical processes of gas and ions transport in respective layers ensuring high efficiency. The superiority of the three-layer cathode has been proven by low impedance and high power density as compared to standard NiO cathode.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleMicrostructure and electrochemical behavior of layered cathodes for molten carbonate fuel cell
dc.typeJournal article
dc.creator.authorĆwieka, K.
dc.creator.authorLysik, A.
dc.creator.authorWejrzanowski, T.
dc.creator.authorNorby, Truls Eivind
dc.creator.authorXing, Wen
cristin.unitcode185,15,17,0
cristin.unitnameSenter for materialvitenskap og nanoteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1918481
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Power Sources&rft.volume=500&rft.spage=&rft.date=2021
dc.identifier.jtitleJournal of Power Sources
dc.identifier.volume500
dc.identifier.pagecount12
dc.identifier.doihttps://doi.org/10.1016/j.jpowsour.2021.229949
dc.identifier.urnURN:NBN:no-94167
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0378-7753
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/91568/1/%25C4%2586wieka_etal_2021.pdf
dc.type.versionPublishedVersion
cristin.articleid229949


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International