Hide metadata

dc.date.accessioned2021-03-26T21:33:11Z
dc.date.available2021-03-26T21:33:11Z
dc.date.created2021-01-22T15:52:58Z
dc.date.issued2020
dc.identifier.citationHolta, Ann Christin Reiersølmoen Csokas, Daniel Øien-Ødegaard, Sigurd Vanderkooy, Alan Gupta, Arvind Kumar Carlsson, Anna-Carin C. Orthaber, Andreas Fiksdahl, Anne Pàpai, Imre Erdélyi, Máté . Catalytic Activity of trans-​Bis(pyridine)​gold Complexes. Journal of the American Chemical Society. 2020, 142(13), 6439-6446
dc.identifier.urihttp://hdl.handle.net/10852/85007
dc.description.abstractGold catalysis has become one of the fastest growing fields in chemistry, providing new organic transformations and offering excellent chemoselectivities under mild reaction conditions. Methodological developments have been driven by wide applicability in the synthesis of complex structures, whereas the mechanistic understanding of Au(III)-mediated processes remains scanty and have become the Achilles’ heel of methodology development. Herein, the systematic investigation of the reactivity of bis(pyridine)-ligated Au(III) complexes is presented, based on NMR spectroscopic, X-ray crystallographic, and DFT data. The electron density of pyridines modulates the catalytic activity of Au(III) complexes in propargyl ester cyclopropanation of styrene. To avoid strain induced by a ligand with a nonoptimal nitrogen–nitrogen distance, bidentate bis(pyridine)–Au(III) complexes convert into dimers. For the first time, bis(pyridine)Au(I) complexes are shown to be catalytically active, with their reactivity being modulated by strain.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleCatalytic Activity of trans-​Bis(pyridine)​gold Complexes
dc.typeJournal article
dc.creator.authorHolta, Ann Christin Reiersølmoen
dc.creator.authorCsokas, Daniel
dc.creator.authorØien-Ødegaard, Sigurd
dc.creator.authorVanderkooy, Alan
dc.creator.authorGupta, Arvind Kumar
dc.creator.authorCarlsson, Anna-Carin C.
dc.creator.authorOrthaber, Andreas
dc.creator.authorFiksdahl, Anne
dc.creator.authorPàpai, Imre
dc.creator.authorErdélyi, Máté
cristin.unitcode185,15,12,0
cristin.unitnameKjemisk institutt
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1877398
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of the American Chemical Society&rft.volume=142&rft.spage=6439&rft.date=2020
dc.identifier.jtitleJournal of the American Chemical Society
dc.identifier.volume142
dc.identifier.issue13
dc.identifier.startpage6439
dc.identifier.endpage6446
dc.identifier.doihttps://doi.org/10.1021/jacs.0c01941
dc.identifier.urnURN:NBN:no-87698
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0002-7863
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/85007/2/jacs.0c01941.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International