Hide metadata

dc.date.accessioned2021-03-15T19:46:40Z
dc.date.available2021-03-15T19:46:40Z
dc.date.created2020-11-11T10:03:43Z
dc.date.issued2020
dc.identifier.citationLi, Xinyu Bianchini, Federico Wind, Julia Pettersen, Christine Vajeeston, Ponniah Wragg, David Fjellvåg, Helmer . Insights into Crystal Structure and Diffusion of Biphasic Na2Zn2TeO6. ACS Applied Materials & Interfaces. 2020, 12(25), 28188-28198
dc.identifier.urihttp://hdl.handle.net/10852/84081
dc.description.abstractThe layered oxide Na2Zn2TeO6 is a fast Na+ ion conductor and a suitable candidate for application as a solid-state electrolyte. We present a detailed study on how synthesis temperature and Na-content affect the crystal structure and thus the Na+ ion conductivity of Na2Zn2TeO6. Furthermore, we report for the first time an O′3-type phase for Na2Zn2TeO6. At a synthesis temperature of 900 °C, we obtain a pure P2-type phase, providing peak performance in Na+ ion conductivity. Synthesis temperatures lower than 900 °C produce a series of mixed P2 and O′3-type phases. The O′3 structure can only be obtained as a pure phase by substituting Li on the Zn-sites to increase the Na-content. Thorough analysis of synchrotron data combined with computational modeling indicates that Li enters the Zn sites and, consequently, the amount of Na in the structure increases to balance the charge according to the formula Na2+xZn2–xLixTeO6 (x = 0.2–0.5). Impedance spectroscopy and computational modeling confirm that reducing the amount of the O′3-type phase enhances the Na+ ion mobility.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleInsights into Crystal Structure and Diffusion of Biphasic Na2Zn2TeO6
dc.typeJournal article
dc.creator.authorLi, Xinyu
dc.creator.authorBianchini, Federico
dc.creator.authorWind, Julia
dc.creator.authorPettersen, Christine
dc.creator.authorVajeeston, Ponniah
dc.creator.authorWragg, David
dc.creator.authorFjellvåg, Helmer
cristin.unitcode185,15,17,10
cristin.unitnameSenter for Materialvitenskap og Nanoteknologi kjemi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1846810
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS Applied Materials & Interfaces&rft.volume=12&rft.spage=28188&rft.date=2020
dc.identifier.jtitleACS Applied Materials & Interfaces
dc.identifier.volume12
dc.identifier.issue25
dc.identifier.startpage28188
dc.identifier.endpage28198
dc.identifier.doihttps://doi.org/10.1021/acsami.0c05863
dc.identifier.urnURN:NBN:no-86845
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1944-8244
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/84081/2/acsami.0c05863.pdf
dc.type.versionPublishedVersion
dc.relation.projectNOTUR/NORSTORE/NN2875k
dc.relation.projectNOTUR/NORSTORE/NS2875k
dc.relation.projectNFR/255441


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International