Hide metadata

dc.date.accessioned2021-01-10T16:23:52Z
dc.date.available2021-01-10T16:23:52Z
dc.date.created2020-06-25T23:18:19Z
dc.date.issued2020
dc.identifier.citationEllingsrud, Ada Johanne Solbrå, Andreas Våvang Einevoll, Gaute Halnes, Geir Rognes, Marie Elisabeth . Finite element simulation of ionic electrodiffusion in cellular geometries. Frontiers in Neuroinformatics. 2020, 14, 1-18
dc.identifier.urihttp://hdl.handle.net/10852/82057
dc.description.abstractMathematical models for excitable cells are commonly based on cable theory, which considers a homogenized domain and spatially constant ionic concentrations. Although such models provide valuable insight, the effect of altered ion concentrations or detailed cell morphology on the electrical potentials cannot be captured. In this paper, we discuss an alternative approach to detailed modeling of electrodiffusion in neural tissue. The mathematical model describes the distribution and evolution of ion concentrations in a geometrically-explicit representation of the intra- and extracellular domains. As a combination of the electroneutral Kirchhoff-Nernst-Planck (KNP) model and the Extracellular-Membrane-Intracellular (EMI) framework, we refer to this model as the KNP-EMI model. Here, we introduce and numerically evaluate a new, finite element-based numerical scheme for the KNP-EMI model, capable of efficiently and flexibly handling geometries of arbitrary dimension and arbitrary polynomial degree. Moreover, we compare the electrical potentials predicted by the KNP-EMI and EMI models. Finally, we study ephaptic coupling induced in an unmyelinated axon bundle and demonstrate how the KNP-EMI framework can give new insights in this setting.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleFinite element simulation of ionic electrodiffusion in cellular geometries
dc.typeJournal article
dc.creator.authorEllingsrud, Ada Johanne
dc.creator.authorSolbrå, Andreas Våvang
dc.creator.authorEinevoll, Gaute
dc.creator.authorHalnes, Geir
dc.creator.authorRognes, Marie Elisabeth
cristin.unitcode185,0,0,0
cristin.unitnameUniversitetet i Oslo
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1817208
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Frontiers in Neuroinformatics&rft.volume=14&rft.spage=1&rft.date=2020
dc.identifier.jtitleFrontiers in Neuroinformatics
dc.identifier.volume14
dc.identifier.doihttps://doi.org/10.3389/fninf.2020.00011
dc.identifier.urnURN:NBN:no-84991
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1662-5196
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/82057/1/fninf-14-00011%2B%25281%2529.pdf
dc.type.versionPublishedVersion
cristin.articleid11


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International