Hide metadata

dc.date.accessioned2019-02-18T11:56:46Z
dc.date.available2019-02-18T11:56:46Z
dc.date.created2018-07-17T15:51:40Z
dc.date.issued2018
dc.identifier.citationRenard, Francois Weiss, Jérôme Mathiesen, Joachim Ben-Zion, Yehuda Kandula, Neelima Cordonnier, Benoit . Critical Evolution of Damage Toward System-Size Failure in Crystalline Rock. Journal of Geophysical Research - Solid Earth. 2018, 123(2), 1969-1986
dc.identifier.urihttp://hdl.handle.net/10852/66595
dc.description.abstractRock failure under shear loading conditions controls earthquake and faulting phenomena. We study the dynamics of microscale damage precursory to shear faulting in a quartz‐monzonite rock representative of crystalline rocks of the continental crust. Using a triaxial rig that is transparent to X‐rays, we image the mechanical evolution of centimeter‐size core samples by in situ synchrotron microtomography with a resolution of 6.5 μm. Time‐lapse three‐dimensional images of the samples inside the rig provide a unique data set of microstructural evolution toward faulting. Above a yield point there is a gradual weakening during which microfractures nucleate and grow until this damage span the whole sample. This leads to shear faults oriented about 30° to the main compressive stress in agreement with Anderson's theory and macroscopic failure. The microfractures can be extracted from the three‐dimensional images, and their dynamics and morphology (i.e., number, volume, orientation, shape, and largest cluster) are quantified as a function of increasing stress toward failure. The experimental data show for the first time that the total volume of microfractures, the rate of damage growth, and the size of the largest microfracture all increase and diverge when approaching faulting. The average flatness of the microfractures (i.e., the ratio between the second and third eigenvalues of their covariance matrix) shows a significant decrease near failure. The precursors to faulting developing in the future faulting zone are controlled by the evolving microfracture population. Their divergent dynamics toward failure is reminiscent of a dynamical critical transition. © 2018 Wileyen_US
dc.languageEN
dc.publisherAmerican Geopgysical Union (AGU)
dc.titleCritical Evolution of Damage Toward System-Size Failure in Crystalline Rocken_US
dc.title.alternativeENEngelskEnglishCritical Evolution of Damage Toward System-Size Failure in Crystalline Rock
dc.typeJournal articleen_US
dc.creator.authorRenard, Francois
dc.creator.authorWeiss, Jérôme
dc.creator.authorMathiesen, Joachim
dc.creator.authorBen-Zion, Yehuda
dc.creator.authorKandula, Neelima
dc.creator.authorCordonnier, Benoit
cristin.unitcode185,15,22,20
cristin.unitnameGEO Physics of Geological processes
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1597700
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Geophysical Research - Solid Earth&rft.volume=123&rft.spage=1969&rft.date=2018
dc.identifier.jtitleJournal of Geophysical Research - Solid Earth
dc.identifier.volume123
dc.identifier.issue2
dc.identifier.startpage1969
dc.identifier.endpage1986
dc.identifier.doihttp://dx.doi.org/10.1002/2017JB014964
dc.identifier.urnURN:NBN:no-69791
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn2169-9313
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/66595/4/Renard_et_al-2018-Journal_of_Geophysical_Research__Solid_Earth.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata