Hide metadata

dc.date.accessioned2013-03-12T12:12:16Z
dc.date.available2013-03-12T12:12:16Z
dc.date.issued2010en_US
dc.date.submitted2010-12-21en_US
dc.identifier.citationFensgård, Øyvind. Global Genome Responses to DNA-Repair Deficiency Modulate Aging and Stress Response Pathways. Doktoravhandling, University of Oslo, 2010en_US
dc.identifier.urihttp://hdl.handle.net/10852/27930
dc.description.abstractThe genomes of all animals are constantly challenged by exogenous and endogenous sources of DNA damaging agents. UV radiation, chemicals, pollutants, and by-products of the cells’ own metabolism may damage the genetic material. Such damages are harmful to the animal as they may cause mutations or generate cytotoxic lesions, which in turn may lead to disease, cancer and aging. Protection of the genome is therefore of the utmost importance. To counteract such potential detrimental effects, all organisms have developed protective mechanisms such as antioxidants and DNA repair mechanisms. DNA excision repair proteins detect lesions in DNA, excise the damaged base and re-insert a correct base, thus maintaining the correct coding properties of the genome. Defects in DNA repair mechanisms may lead to cancer, neurodegeneration, other age-related pathologies or senescence. The nematode Caenorhabditis elegans (C. elegans) contains very few DNA glycosylases, which are the lesion-detecting proteins in DNA excision repair, compared to other animals and organisms. Analysis of all transcribed genes in DNA repair-deficient mutants in C. elegans revealed a global transcriptional response aimed at minimizing further damage to the genome. This involved a down-regulation of insulin-like signaling and an upregulation of antioxidants and stress response genes, similar to the response seen in both long-lived and old animals. This response seems to be conserved across different species as analysis of comparable mutants in the yeast Saccharomyces cerevisiae and mouse showed a similar response. Pathway reconstruction and literature mining suggests that this response is not elicited only by lack of repair per se, but rather from aberrant or attempted processing of lesions by other repair pathways than those normally repairing such lesions. This result in lesions that block the transcription of active genes and signal the transcription of other genes aimed at reducing further damage to DNA. Analysis of C. elegans mutants deficient in two different repair pathways revealed a completely different response with downregulation of Aurora-B and Polo-like kinase 1 signaling networks as well as downregulation of other DNA repair pathways. The mechanism and signaling origin of this response is yet unknown. Gene expression profiling is emerging as a powerful complementary tool to classical genetics and molecular analysis. By taking a systems biology approach, which takes into account the interplay between many pathways, gene expression profiling may aid in the interpretation of observed phenotypes and assist in the generation of new testable hypotheses.eng
dc.language.isoengen_US
dc.relation.haspartPaper I: Loss of Caenorhabditis elegans UNG-1 uracil-DNA glycosylase affects apoptosis in response to DNA damaging agents. Hanne K. Skjeldam, Henok Kassahun, Øyvind Fensgård, Tanima SenGupta, Eshrat Babaie, Jessica M. Lindvall, Katarzyna Arczewska, Hilde Nilsen DNA Repair (2010) 9(8):861-870. The paper is removed from the thesis in DUO due to publisher restrictions. The published version is available at: https://doi.org/10.1016/j.dnarep.2010.04.009
dc.relation.haspartPaper II: A two-tiered compensatory response to loss of DNA repair modulates aging and stress response pathways Øyvind Fensgård, Henok Kassahun, Izabela Bombik, Torbjørn Rognes, Jessica Margareta Lindvall and Hilde Nilsen Aging (Albany NY), 2010 Mar 31;2(3):133-59 PMID:20382984
dc.relation.haspartPaper III: Global transcriptional response after exposure of fission yeast cells to ultraviolet light Henriette C Skjølberg, Øyvind Fensgård, Hilde Nilsen, Beata Grallert, Erik Boye BMC Cell Biology, 2009 Dec 16;10:87. Published under a Creative Commons Attribution License. The published version of this paper is available at: https://doi.org/10.1186/1471-2121-10-87
dc.relation.urihttps://doi.org/10.1016/j.dnarep.2010.04.009
dc.relation.urihttps://doi.org/10.1186/1471-2121-10-87
dc.titleGlobal Genome Responses to DNA-Repair Deficiency Modulate Aging and Stress Response Pathwaysen_US
dc.typeDoctoral thesisen_US
dc.date.updated2011-02-03en_US
dc.creator.authorFensgård, Øyvinden_US
dc.subject.nsiVDP::700en_US
cristin.unitcode130000en_US
cristin.unitnameMedisinske fakulteten_US
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.au=Fensgård, Øyvind&rft.title=Global Genome Responses to DNA-Repair Deficiency Modulate Aging and Stress Response Pathways&rft.inst=University of Oslo&rft.date=2010&rft.degree=Doktoravhandlingen_US
dc.identifier.urnURN:NBN:no-26720en_US
dc.type.documentDoktoravhandlingen_US
dc.identifier.duo110240en_US
dc.contributor.supervisorHilde Nilsen and Magnar Bjøråsen_US
dc.identifier.bibsys111313406en_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/27930/1/dravhandling-fensgard.pdf


Files in this item

Appears in the following Collection

Hide metadata