• English
    • Norsk
  • English 
    • English
    • Norsk
  • Administration
View Item 
  •   Home
  • Det matematisk-naturvitenskapelige fakultet
  • Institutt for informatikk
  • Institutt for informatikk
  • View Item
  •   Home
  • Det matematisk-naturvitenskapelige fakultet
  • Institutt for informatikk
  • Institutt for informatikk
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An integrated digital FDSM microphone

Aarvik, Helge
Master thesis
View/Open
No file.
Year
2005
Permanent link
http://urn.nb.no/URN:NBN:no-10970

Metadata
Show metadata
Appears in the following Collection
  • Institutt for informatikk [3603]
Abstract
Analog to digital conversion has become, like many other processes drawn more and more into the digital domain. Delta-Sigma A/D conversion avoids some of the challenges with the digital components of traditional A/D conversion. This thesis presents and analyses the idea of an integrated digital FDSM microphone. FDSM is a branch of Delta-Sigma analog-to-digital converters that are implemented only with the use of standard digital gates. An FDSM takes an FM signal as input, and this can be generated in the circuit itself with a ring oscillator of inverters. The FM signal generated by the oscillator, can be modulated with a plate capacitor that responds to air pressure, and brings an analog signal into the digital domain. The thesis analyzes the circuit components used, providing an extensive explanation of a sinc^2 decimator, with both properties in the time and frequency domain. An analasys on the DC gain of the components, and their relation with quantization noise is also provided. This analasys shows that the idea of the FDSM microphone is worthwhile, and how to optimize the parametres to increase the sensitivity of the microphone. It has been shown that the FDSM microphone has high enough sensitivity to meet the demands of such applications as audio, that need a high maximum passband frequency. A documentation of an implementation in CMOS VLSI is provided, however due to a late discovered error, this implementation did not provide qualified results. The thesis also provides ideas on areas of the FDSM microphone, and it's implementation, that can improve the quality and sensitivity, and thus increase the scope of applications and relax demands on implementation.
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy
 

 

For students / employeesSubmit master thesisAccess to restricted material

Browse

All of DUOCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

For library staff

Login
RSS Feeds
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy