Hide metadata

dc.date.accessioned2021-12-16T12:38:48Z
dc.date.available2021-12-16T12:38:48Z
dc.date.created2021-05-06T13:36:51Z
dc.date.issued2021
dc.identifier.citationHolst, Bodil Alexandrowicz, Gil Avidor, Nadav Benedek, Giorgio Bracco, Gianangelo Ernst, Wolfgang E. Farias, Daniel Jardine, Andrew P. Lefmann, Kim Manson, Joseph R. Marquardt, Roberto Artés, Salvador Miret Sibener, Steven J. Wells, Justin W Tamtögl, Anton Allison, William . Material properties particularly suited to be measured with helium scattering: selected examples from 2D materials, van der Waals heterostructures, glassy materials, catalytic substrates, topological insulators and superconducting radio frequency materials. Physical Chemistry, Chemical Physics - PCCP. 2021, 23(13), 7653-7672
dc.identifier.urihttp://hdl.handle.net/10852/89580
dc.description.abstractHelium Atom Scattering (HAS) and Helium Spin-Echo scattering (HeSE), together helium scattering, are well established, but non-commercial surface science techniques. They are characterised by the beam inertness and very low beam energy (<0.1 eV) which allows essentially all materials and adsorbates, including fragile and/or insulating materials and light adsorbates such as hydrogen to be investigated on the atomic scale. At present there only exist an estimated less than 15 helium and helium spin-echo scattering instruments in total, spread across the world. This means that up till now the techniques have not been readily available for a broad scientific community. Efforts are ongoing to change this by establishing a central helium scattering facility, possibly in connection with a neutron or synchrotron facility. In this context it is important to clarify what information can be obtained from helium scattering that cannot be obtained with other surface science techniques. Here we present a non-exclusive overview of a range of material properties particularly suited to be measured with helium scattering: (i) high precision, direct measurements of bending rigidity and substrate coupling strength of a range of 2D materials and van der Waals heterostructures as a function of temperature, (ii) direct measurements of the electron–phonon coupling constant λ exclusively in the low energy range (<0.1 eV, tuneable) for 2D materials and van der Waals heterostructures (iii) direct measurements of the surface boson peak in glassy materials, (iv) aspects of polymer chain surface dynamics under nano-confinement (v) certain aspects of nanoscale surface topography, (vi) central properties of surface dynamics and surface diffusion of adsorbates (HeSE) and (vii) two specific science case examples – topological insulators and superconducting radio frequency materials, illustrating how combined HAS and HeSE are necessary to understand the properties of quantum materials. The paper finishes with (viii) examples of molecular surface scattering experiments and other atom surface scattering experiments which can be performed using HAS and HeSE instruments.
dc.languageEN
dc.rightsAttribution 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.titleMaterial properties particularly suited to be measured with helium scattering: selected examples from 2D materials, van der Waals heterostructures, glassy materials, catalytic substrates, topological insulators and superconducting radio frequency materials
dc.typeJournal article
dc.creator.authorHolst, Bodil
dc.creator.authorAlexandrowicz, Gil
dc.creator.authorAvidor, Nadav
dc.creator.authorBenedek, Giorgio
dc.creator.authorBracco, Gianangelo
dc.creator.authorErnst, Wolfgang E.
dc.creator.authorFarias, Daniel
dc.creator.authorJardine, Andrew P.
dc.creator.authorLefmann, Kim
dc.creator.authorManson, Joseph R.
dc.creator.authorMarquardt, Roberto
dc.creator.authorArtés, Salvador Miret
dc.creator.authorSibener, Steven J.
dc.creator.authorWells, Justin W
dc.creator.authorTamtögl, Anton
dc.creator.authorAllison, William
cristin.unitcode185,15,4,90
cristin.unitnameHalvlederfysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1908525
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physical Chemistry, Chemical Physics - PCCP&rft.volume=23&rft.spage=7653&rft.date=2021
dc.identifier.jtitlePhysical Chemistry, Chemical Physics - PCCP
dc.identifier.volume23
dc.identifier.issue13
dc.identifier.startpage7653
dc.identifier.endpage7672
dc.identifier.doihttps://doi.org/10.1039/d0cp05833e
dc.identifier.urnURN:NBN:no-92189
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1463-9076
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/89580/1/d0cp05833e.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 3.0 Unported
This item's license is: Attribution 3.0 Unported