Hide metadata

dc.date.accessioned2020-12-05T19:16:23Z
dc.date.available2020-12-05T19:16:23Z
dc.date.created2020-11-28T20:53:19Z
dc.date.issued2020
dc.identifier.citationCastro, Abril C Balcells, David Repisky, Michal Helgaker, Trygve Cascella, Michele . First-Principles Calculation of 1H NMR Chemical Shifts of Complex Metal Polyhydrides: The Essential Inclusion of Relativity and Dynamics. Inorganic Chemistry. 2020
dc.identifier.urihttp://hdl.handle.net/10852/81439
dc.description.abstract1H NMR spectroscopy has become an important technique for the characterization of transition-metal hydride complexes, whose metal-bound hydrides are often difficult to locate by X-ray diffraction. In this regard, the accurate prediction of 1H NMR chemical shifts provides a useful, but challenging, strategy to help in the interpretation of the experimental spectra. In this work, we establish a density-functional-theory protocol that includes relativistic, solvent, and dynamic effects at a high level of theory, allowing us to report an accurate and reliable interpretation of 1H NMR hydride chemical shifts of iridium polyhydride complexes. In particular, we have studied in detail the hydride chemical shifts of the [Ir6(IMe)8(CO)2H14]2+ complex in order to validate previous assignments. The computed 1H NMR chemical shifts are strongly dependent on the relativistic treatment, the choice of the DFT exchange–correlation functional, and the conformational dynamics. By combining a fully relativistic four-component electronic-structure treatment with ab initio molecular dynamics, we were able to reliably model both the terminal and bridging hydride chemical shifts and to show that two NMR hydride signals were inversely assigned in the experiment.
dc.languageEN
dc.publisherACS Publications
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleFirst-Principles Calculation of 1H NMR Chemical Shifts of Complex Metal Polyhydrides: The Essential Inclusion of Relativity and Dynamics
dc.typeJournal article
dc.creator.authorCastro, Abril C
dc.creator.authorBalcells, David
dc.creator.authorRepisky, Michal
dc.creator.authorHelgaker, Trygve
dc.creator.authorCascella, Michele
cristin.unitcode185,15,12,70
cristin.unitnameHylleraas-senteret
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1853698
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Inorganic Chemistry&rft.volume=&rft.spage=&rft.date=2020
dc.identifier.jtitleInorganic Chemistry
dc.identifier.doihttps://doi.org/10.1021/acs.inorgchem.0c02753
dc.identifier.urnURN:NBN:no-84530
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0020-1669
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/81439/1/acs.inorgchem.0c02753.pdf
dc.type.versionPublishedVersion
cristin.articleidacs.inorgchem.0c02753
dc.relation.projectEC/H2020/794563
dc.relation.projectNFR/262695
dc.relation.projectNOTUR/NORSTORE/NN4654K


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International