Hide metadata

dc.date.accessioned2020-11-20T19:47:42Z
dc.date.available2020-11-20T19:47:42Z
dc.date.created2020-10-28T10:05:38Z
dc.date.issued2020
dc.identifier.citationFranco-Ulloa, Sebastian Tatulli, Giuseppina Bore, Sigbjørn Løland Moglianetti, Mauro Pompa, Pier Paolo Cascella, Michele De Vivo, Marco . Dispersion state phase diagram of citrate-coated metallic nanoparticles in saline solutions. Nature Communications. 2020, 11
dc.identifier.urihttp://hdl.handle.net/10852/81125
dc.description.abstractAbstract The fundamental interactions underlying citrate-mediated chemical stability of metal nanoparticles, and their surface characteristics dictating particle dispersion/aggregation in aqueous solutions, are largely unclear. Here, we developed a theoretical model to estimate the stoichiometry of small, charged ligands (like citrate) chemisorbed onto spherical metallic nanoparticles and coupled it with atomistic molecular dynamics simulations to define the uncovered solvent-accessible surface area of the nanoparticle. Then, we integrated coarse-grained molecular dynamics simulations and two-body free energy calculations to define dispersion state phase diagrams for charged metal nanoparticles in a range of medium’s ionic strength, a known trigger for aggregation. Ultraviolet-visible spectroscopy experiments of citrate-capped nanocolloids validated our predictions and extended our results to nanoparticles up to 35 nm. Altogether, our results disclose a complex interplay between the particle size, its surface charge density, and the ionic strength of the medium, which ultimately clarifies how these variables impact colloidal stability.
dc.description.abstractAbstract The fundamental interactions underlying citrate-mediated chemical stability of metal nanoparticles, and their surface characteristics dictating particle dispersion/aggregation in aqueous solutions, are largely unclear. Here, we developed a theoretical model to estimate the stoichiometry of small, charged ligands (like citrate) chemisorbed onto spherical metallic nanoparticles and coupled it with atomistic molecular dynamics simulations to define the uncovered solvent-accessible surface area of the nanoparticle. Then, we integrated coarse-grained molecular dynamics simulations and two-body free energy calculations to define dispersion state phase diagrams for charged metal nanoparticles in a range of medium’s ionic strength, a known trigger for aggregation. Ultraviolet-visible spectroscopy experiments of citrate-capped nanocolloids validated our predictions and extended our results to nanoparticles up to 35 nm. Altogether, our results disclose a complex interplay between the particle size, its surface charge density, and the ionic strength of the medium, which ultimately clarifies how these variables impact colloidal stability.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleDispersion state phase diagram of citrate-coated metallic nanoparticles in saline solutions
dc.typeJournal article
dc.creator.authorFranco-Ulloa, Sebastian
dc.creator.authorTatulli, Giuseppina
dc.creator.authorBore, Sigbjørn Løland
dc.creator.authorMoglianetti, Mauro
dc.creator.authorPompa, Pier Paolo
dc.creator.authorCascella, Michele
dc.creator.authorDe Vivo, Marco
cristin.unitcode185,15,12,59
cristin.unitnameTeoretisk kjemi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2
dc.identifier.cristin1842821
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nature Communications&rft.volume=11&rft.spage=&rft.date=2020
dc.identifier.jtitleNature Communications
dc.identifier.volume11
dc.identifier.issue1
dc.identifier.doihttps://doi.org/10.1038/s41467-020-19164-3
dc.identifier.urnURN:NBN:no-84207
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2041-1723
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/81125/5/s41467-020-19164-3.pdf
dc.type.versionPublishedVersion
cristin.articleid5422
dc.relation.projectNOTUR/NORSTORE/NN4654K
dc.relation.projectNFR/262695


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International