Hide metadata

dc.date.accessioned2020-08-17T19:17:27Z
dc.date.available2020-08-17T19:17:27Z
dc.date.created2020-01-20T16:59:10Z
dc.date.issued2020
dc.identifier.citationArtús Suàrez, Lluís Jayarathne, Upul Balcells, David Bernskoetter, Wesley H. Hazari, Nilay Jaraiz, Martin Nova, Ainara . Rational selection of co-catalysts for the deaminative hydrogenation of amides. Chemical Science. 2020, 11(8), 2225-2230
dc.identifier.urihttp://hdl.handle.net/10852/78463
dc.description.abstractThe catalytic hydrogenation of amides is an atom economical method to synthesize amines. Previously, it was serendipitously discovered that the combination of a secondary amide co-catalyst with (iPrPNP)Fe(H)(CO) (iPrPNP = N[CH2CH2(PiPr2)]2−), results in a highly active base metal system for deaminative amide hydrogenation. Here, we use DFT to develop an improved co-catalyst for amide hydrogenation. Initially, we computationally evaluated the ability of a series of co-catalysts to accelerate the turnover-limiting proton transfer during C–N bond cleavage and poison the (iPrPNP)Fe(H)(CO) catalyst through a side reaction. TBD (triazabicyclodecene) was identified as the leading co-catalyst. It was experimentally confirmed that when TBD is combined with (iPrPNP)Fe(H)(CO) a remarkably active system for amide hydrogenation is generated. TBD also enhances the activity of other catalysts for amide hydrogenation and our results provide guidelines for the rational design of future co-catalysts.
dc.languageEN
dc.rightsAttribution-NonCommercial 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/
dc.titleRational selection of co-catalysts for the deaminative hydrogenation of amides
dc.typeJournal article
dc.creator.authorArtús Suàrez, Lluís
dc.creator.authorJayarathne, Upul
dc.creator.authorBalcells, David
dc.creator.authorBernskoetter, Wesley H.
dc.creator.authorHazari, Nilay
dc.creator.authorJaraiz, Martin
dc.creator.authorNova, Ainara
cristin.unitcode185,15,12,70
cristin.unitnameHylleraas-senteret
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1778366
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Chemical Science&rft.volume=11&rft.spage=2225&rft.date=2020
dc.identifier.jtitleChemical Science
dc.identifier.volume11
dc.identifier.issue8
dc.identifier.startpage2225
dc.identifier.endpage2230
dc.identifier.doihttps://doi.org/10.1039/c9sc03812d
dc.identifier.urnURN:NBN:no-81532
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2041-6520
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/78463/1/article71409.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/250044
dc.relation.projectNFR/262695
dc.relation.projectNORDFORSK/85378
dc.relation.projectNOTUR/NORSTORE/nn4654k


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial 3.0 Unported
This item's license is: Attribution-NonCommercial 3.0 Unported