Skjul metadata

dc.date.accessioned2018-11-13T11:30:24Z
dc.date.available2019-02-02T23:31:40Z
dc.date.created2018-06-18T15:52:13Z
dc.date.issued2018
dc.identifier.citationSky, Thomas Neset Johansen, Klaus Magnus H Riise, Heine Nygard Svensson, Bengt Gunnar Vines, Lasse . Gallium diffusion in zinc oxide via the paired dopant-vacancy mechanism. Journal of Applied Physics. 2018, 123(5)
dc.identifier.urihttp://hdl.handle.net/10852/65477
dc.description.abstractIsochronal and isothermal diffusion experiments of gallium (Ga) in zinc oxide (ZnO) have been performed in the temperature range of 900–1050 °C. The samples used consisted of a sputter-deposited and highly Ga-doped ZnO film at the surface of a single-crystal bulk material. We use a novel reaction diffusion (RD) approach to demonstrate that the diffusion behavior of Ga in ZnO is consistent with zinc vacancy (VZn) mediation via the formation and dissociation of GaZnVZn complexes. In the RD modeling, experimental diffusion data are fitted utilizing recent density-functional-theory estimates of the VZn formation energy and the binding energy of GaZnVZn. From the RD modeling, a migration energy of 2.3 eV is deduced for GaZnVZn, and a total/effective activation energy of 3.0 eV is obtained for the Ga diffusion. Furthermore, and for comparison, employing the so-called Fair model, a total/effective activation energy of 2.7 eV is obtained for the Ga diffusion, reasonably close to the total value extracted from the RD-modeling. © 2018 AIP Publishingen_US
dc.languageEN
dc.publisherAmerican Institute of Physics (AIP)
dc.relation.ispartofSky, Thomas Neset (2019) Impurity Diffusion in Single Crystal Zinc Oxide. Doctoral thesis http://hdl.handle.net/10852/67145
dc.relation.urihttp://hdl.handle.net/10852/67145
dc.titleGallium diffusion in zinc oxide via the paired dopant-vacancy mechanismen_US
dc.title.alternativeENEngelskEnglishGallium diffusion in zinc oxide via the paired dopant-vacancy mechanism
dc.typeJournal articleen_US
dc.creator.authorSky, Thomas Neset
dc.creator.authorJohansen, Klaus Magnus H
dc.creator.authorRiise, Heine Nygard
dc.creator.authorSvensson, Bengt Gunnar
dc.creator.authorVines, Lasse
cristin.unitcode185,15,4,90
cristin.unitnameHalvlederfysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1592021
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Applied Physics&rft.volume=123&rft.spage=&rft.date=2018
dc.identifier.jtitleJournal of Applied Physics
dc.identifier.volume123
dc.identifier.issue5
dc.identifier.doihttp://dx.doi.org/10.1063/1.5000123
dc.identifier.urnURN:NBN:no-68232
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn0021-8979
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/65477/1/1592021.pdf
dc.type.versionPublishedVersion


Tilhørende fil(er)

Finnes i følgende samling

Skjul metadata