• English
    • Norsk
  • English 
    • English
    • Norsk
  • Administration
View Item 
  •   Home
  • Øvrige samlinger
  • Høstingsarkiver
  • CRIStin høstingsarkiv
  • View Item
  •   Home
  • Øvrige samlinger
  • Høstingsarkiver
  • CRIStin høstingsarkiv
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accelerating Kohn‐Sham response theory using density fitting and the auxiliary‐density‐matrix method

Kumar, Chandan; Fliegl, Heike; Jensen, Frank; Teale, Andrew M.; Reine, Simen Sommerfelt; Kjærgaard, Thomas
Journal article; AcceptedVersion; Peer reviewed
View/Open
ADMM_quad_rsp.pdf (697.7Kb)
Year
2018
Permanent link
http://urn.nb.no/URN:NBN:no-67571

CRIStin
1592852

Metadata
Show metadata
Appears in the following Collection
  • Kjemisk institutt [843]
  • CRIStin høstingsarkiv [15868]
Original version
International Journal of Quantum Chemistry. 2018, DOI: http://dx.doi.org/10.1002/qua.25639
Abstract
An extension of the formulation of the atomic‐orbital‐based response theory of Larsen et al., JCP 113, 8909 (2000) is presented. This new framework has been implemented in LSDalton and allows for the use of Kohn‐Sham density‐functional theory with approximate treatment of the Coulomb and Exchange contributions to the response equations via the popular resolution‐of‐the‐identity approximation as well as the auxiliary‐density matrix method (ADMM). We present benchmark calculations of ground‐state energies as well as the linear and quadratic response properties: vertical excitation energies, polarizabilities, and hyperpolarizabilities. The quality of these approximations in a range of basis sets is assessed against reference calculations in a large aug‐pcseg‐4 basis. Our results confirm that density fitting of the Coulomb contribution can be used without hesitation for all the studied properties. The ADMM treatment of exchange is shown to yield high accuracy for ground‐state and excitation energies, whereas for polarizabilities and hyperpolarizabilities the performance gain comes at a cost of accuracy. Excitation energies of a tetrameric model consisting of units of the P700 special pigment of photosystem I have been studied to demonstrate the applicability of the code for a large system.
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy
 

 

For students / employeesSubmit master thesisAccess to restricted material

Browse

All of DUOCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

For library staff

Login
RSS Feeds
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy