Hide metadata

dc.date.accessioned2018-09-13T11:31:24Z
dc.date.available2018-09-13T11:31:24Z
dc.date.created2017-12-18T13:08:34Z
dc.date.issued2017
dc.identifier.citationVajeeston, Ponniah Fjellvåg, Helmer . First-principles study of structural stability, dynamical and mechanical properties of Li2FeSiO4 polymorphs. RSC Advances. 2017, 7(27), 16843-16853
dc.identifier.urihttp://hdl.handle.net/10852/64701
dc.description.abstractLi2FeSiO4 is an important alternative cathode for next generation Li-ion batteries due to its high theoretical capacity (330 mA h g−1). However, its development has faced significant challenges arising from structural complexity and poor ionic conductivity. In the present work, the relative stability, electronic structure, thermodynamics, and mechanical properties of potential cathode material Li2FeSiO4 and its polymorphs have been studied by state-of-the-art density-functional calculations. Among the 11 structural arrangements considered for the structural optimization calculations, the experimentally known monoclinic P21 modification is found to be the ground state structure. The application of pressure originates a sequence of phase transitions according to P21 → Pmn21 → I222, and the estimated values of the critical pressure are found to be 0.38 and 1.93 GPa. The electronic structures reveal that all the considered polymorphs have a non-metallic character, with band gap values varying between 3.0 and 3.2 eV. The energy differences between different polymorphs are small, and most of these structures are dynamically stable. On the other hand, the calculation of single crystal elastic constants reveals that only few Li2FeSiO4 polymorphs are mechanically stable. At room temperature, the diffusion coefficient calculations of Li2FeSiO4 in different polymorphs reveal that the Li-ion conductivity of this material is poor.en_US
dc.languageEN
dc.rightsAttribution-NonCommercial 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/
dc.titleFirst-principles study of structural stability, dynamical and mechanical properties of Li2FeSiO4 polymorphsen_US
dc.typeJournal articleen_US
dc.creator.authorVajeeston, Ponniah
dc.creator.authorFjellvåg, Helmer
cristin.unitcode185,15,17,10
cristin.unitnameSenter for Materialvitenskap og Nanoteknologi kjemi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1528963
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=RSC Advances&rft.volume=7&rft.spage=16843&rft.date=2017
dc.identifier.jtitleRSC Advances
dc.identifier.volume7
dc.identifier.issue27
dc.identifier.startpage16843
dc.identifier.endpage16853
dc.identifier.doihttp://dx.doi.org/10.1039/c6ra26555c
dc.identifier.urnURN:NBN:no-67279
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn2046-2069
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/64701/1/Li2FeSiO4.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/143732
dc.relation.projectNOTUR/NORSTORE/nn2875k


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial 3.0 Unported
This item's license is: Attribution-NonCommercial 3.0 Unported