Hide metadata

dc.date.accessioned2018-09-12T10:28:23Z
dc.date.available2018-09-12T10:28:23Z
dc.date.created2017-11-02T19:00:12Z
dc.date.issued2017
dc.identifier.citationAhoba-Sam, Christian Olsbye, Unni Jens, Klaus-Joachim . The Role of Solvent Polarity on Low-Temperature Methanol Synthesis Catalyzed by Cu Nanoparticles. Frontiers in Energy Research. 2017, 5(July)
dc.identifier.urihttp://hdl.handle.net/10852/64654
dc.description.abstractMethanol syntheses at low temperature in a liquid medium present an opportunity for full syngas conversion per pass. The aim of this work was to study the role of solvents polarity on low-temperature methanol synthesis reaction using eight different aprotic polar solvents. A “once through” catalytic system, which is composed of Cu nanoparticles and sodium methoxide, was used for methanol synthesis at 100°C and 20 bar syngas pressure. Solvent polarity rather than the 7–10 nm Cu (and 30 nm Cu on SiO2) catalyst used dictated trend of syngas conversion. Diglyme with a dielectric constant (ɛ) = 7.2 gave the highest syngas conversion among the eight different solvents used. Methanol formation decreased with either increasing or decreasing solvent ɛ value of diglyme (ɛ = 7.2). To probe the observed trend, possible side reactions of methyl formate (MF), the main intermediate in the process, were studied. MF was observed to undergo two main reactions; (i) decarbonylation to form CO and MeOH and (ii) a nucleophilic substitution to form dimethyl ether and sodium formate. Decreasing polarity favored the decarbonylation side reaction while increasing polarity favored the nucleophilic substitution reaction. In conclusion, our results show that moderate polarity solvents, e.g., diglyme, favor MF hydrogenolysis and, hence, methanol formation, by retarding the other two possible side reactions.
dc.languageEN
dc.publisherFrontiers
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleThe Role of Solvent Polarity on Low-Temperature Methanol Synthesis Catalyzed by Cu Nanoparticles
dc.typeJournal article
dc.creator.authorAhoba-Sam, Christian
dc.creator.authorOlsbye, Unni
dc.creator.authorJens, Klaus-Joachim
cristin.unitcode185,15,12,0
cristin.unitnameKjemisk institutt
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1510522
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Frontiers in Energy Research&rft.volume=5&rft.spage=&rft.date=2017
dc.identifier.jtitleFrontiers in Energy Research
dc.identifier.volume5
dc.identifier.issueJuly
dc.identifier.pagecount11
dc.identifier.doihttp://dx.doi.org/10.3389/fenrg.2017.00015
dc.identifier.urnURN:NBN:no-67186
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2296-598X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/64654/2/17Tre%2Brole%2Bof%2Bsolvent1510522.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/228157/O70
dc.relation.projectNORTEM/197405


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International