• English
    • Norsk
  • English 
    • English
    • Norsk
  • Administration
View Item 
  •   Home
  • Øvrige samlinger
  • Høstingsarkiver
  • CRIStin høstingsarkiv
  • View Item
  •   Home
  • Øvrige samlinger
  • Høstingsarkiver
  • CRIStin høstingsarkiv
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Solid-state photoelectrochemical cell with TiO2 nanotubes for water splitting

Xu, Kaiqi; Chatzitakis, Athanasios Eleftherios; Norby, Truls
Journal article; SubmittedVersion
View/Open
Xu+Chatzitakis+ ... +Sci+(Cristin+version).pdf (1.183Mb)
Year
2017
Permanent link
http://urn.nb.no/URN:NBN:no-64256

CRIStin
1378374

Metadata
Show metadata
Appears in the following Collection
  • Kjemisk institutt [843]
  • CRIStin høstingsarkiv [15992]
Original version
Photochemical and Photobiological Sciences. 2017, 16 (1), 10-16, DOI: http://dx.doi.org/10.1039/c6pp00217j
Abstract
We have fabricated and tested a photoelectrochemical (PEC) cell where the aqueous electrolyte has been replaced by a proton conducting hydrated Nafion® polymer membrane. The membrane was sandwiched between a TiO2-based photoanode and a Pt/C-based cathode. The performance was tested with two types of photoanode electrodes, a thermally prepared TiO2 film on Ti foil (T-TiO2) and a nanostructured TiO2 films in the form of highly ordered nanotubes (TNT) of different lengths. Firstly, photovoltammetry experiments were conducted under asymmetric conditions, where the anode was immersed in deionized water, while the cathode was kept in ambient air. The results showed a high incident photon-to-current efficiency (IPCE) of 19% under unassisted conditions (short-circuit, 0 V vs. cathode) with short TNT (ca. 1 μm) under 4 mW cm−2 illumination with UV-A rich light. Secondly, the deionized water was replaced by 0.5 M Na2SO4 and now the performance was higher with longer nanotubes, assigned to increased ionic conductivity inside the tubes. An unassisted (0 V) IPCE of 33% was achieved with nanotubes of ca. 8 μm. The presented solid-state PEC cell minimizes the electrode distance and volume of the device, and provides a way towards compact practical applications in solar water splitting.
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy
 

 

For students / employeesSubmit master thesisAccess to restricted material

Browse

All of DUOCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

For library staff

Login
RSS Feeds
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy