Hide metadata

dc.date.accessioned2014-02-06T12:03:35Z
dc.date.available2014-02-06T12:03:35Z
dc.date.issued2012en_US
dc.date.submitted2013-02-27en_US
dc.identifier.citationZatula, Alexey S.. Experimental and computational studies of dynamic processes in ionic water clusters. Doktoravhandling, University of Oslo, 2012en_US
dc.identifier.urihttp://hdl.handle.net/10852/34838
dc.description.abstractClusters of water molecules mimic the transition from gas phase to bulk water. Cluster species of the desired sizes can be selected using mass spectrometric techniques and their size-dependent properties can thereby be measured. The properties of small ionic clusters are of particular relevance to atmospheric science, providing insights into nucleation phenomena. This work is dedicated to the investigation of properties of selected ionic molecular clusters and their gas phase reactions with heavy water or ammonia, with a strong emphasis on proton transfer phenomena. This has been achieved both experimentally in cluster beam experiments and by quantum chemical calculations. Both in the abundance spectra and the evaporation patterns of the investigated aqueous clusters “magic numbers” discontinuities in otherwise smoothly varying distributions were observed, and are discussed. To further examine a marked difference in the observed “magic-number” behaviour of H+(pyridine)1(H2O)n and H+(NH3)1(pyridine)1(H2O)n clusters, quantum chemical calculations have been employed. Next, relative reaction cross sections were measured for cluster ions reacting with D2O and with NH3 in the collision cell. Analysis of the results for the reaction H+(pyridine)1(H2O)n + NH3 allowed us to improve a kinetic model of the atmospheric positive ion composition. Upon reaction of a cluster with D2O a short-lived reaction intermediate is formed, which is followed by subsequent loss of D2O, HDO or H2O. The reaction channel leading to the loss of HDO requires proton mobility within the cluster, involving O–H-bond activation. The loss of HDO was not observed for protonated water clusters containing one pyridine molecule, a consequence of the immobilizing effect on the extra proton by the nitrogen base site. Similarly, the rates of protium/deuterium exchange for water clusters containing alkali metal ions are consistently extremely low. However, the experiments show enhanced proton mobility in water clusters containing two or three pyridine molecules (H+(pyridine)2–3(H2O)n), in 2,2'-bipyridine and 2,2'-ethylenebipyridine containing water clusters as well as in bisulfate water clusters (HSO4?(H2O)n). On the basis of systematic quantum chemical calculations we present consistent mechanisms for low energy water rearrangement and proton transfer along preformed "wires" of hydrogen bonds between the two distinct sites provided by these core ions in complete support of the experimental findings.eng
dc.language.isoengen_US
dc.relation.haspartPaper I M. J. Ryding, A. S. Zatula, P. U. Andersson and E. Uggerud. Isotope exchange in reactions between D2O and size-selected ionic water clusters containing pyridine, H+(pyridine)m(H2O)n. Physical Chemistry Chemical Physics, 2011. 13(4), p. 1356-1367. The paper is removed from the thesis in DUO due to publisher restrictions. The published version is available at:http://dx.doi.org/10.1039/c0cp00416b
dc.relation.haspartPaper II A. S. Zatula, P. U. Andersson, M. J. Ryding and E. Uggerud. Proton mobility and stability of water clusters containing the bisulfate anion, HSO4–(H2O)n. Physical Chemistry Chemical Physics, 2011. 13(29), p. 13287-13294. The paper is removed from the thesis in DUO due to publisher restrictions. The published version is available at:http://dx.doi.org/10.1039/c1cp21070j
dc.relation.haspartPaper III M. J. Ryding, Å. M. Jonsson, A. S. Zatula, P. U. Andersson and E. Uggerud. Reactions of H+(pyridine)m(H2O)n and H+(NH3)1(pyridine)m(H2O)n with NH3: experiments and kinetic modelling. Published with an Creative Commons Attribution 3.0 License. Atmospheric Chemistry and Physics, 2012. 12, p. 2809-2822. http://dx.doi.org/10.5194/acp-12-2809-2012
dc.relation.haspartPaper IV M. J. Ryding, K. I. Ruusuvuori, P. U. Andersson, A. S. Zatula, M. J. McGrath, T. C. Kurtén, I. K. Ortega Colomer, H. Vehkamäki and E. Uggerud. Structural Rearrangements and Magic Numbers in Reactions between Pyridine-containing Water Clusters and Ammonia. The Journal of Physical Chemistry A, 2012. 116(20), p. 4902–4908. The paper is removed from the thesis in DUO due to publisher restrictions. The published version is available at:http://dx.doi.org/10.1021/jp3021326
dc.relation.haspartPaper V M. J. Ryding, P. U. Andersson, A. S. Zatula and E. Uggerud. Proton mobility in water clusters. European Journal Of Mass Spectrometry, 2012. 18(2), p. 215–222. The paper is removed from the thesis in DUO due to publisher restrictions. The published version is available at:http://dx.doi.org/10.1255/ejms.1172
dc.relation.haspartPaper VI A. S. Zatula, M. J. Ryding, P. U. Andersson, and E. Uggerud. Proton mobility and stability of water clusters containing alkali metal ions. International Journal of Mass Spectrometry, 2012. 330-332, p. 191-199. The paper is removed from the thesis in DUO due to publisher restrictions. The published version is available at:http://dx.doi.org/10.1016/j.ijms.2012.07.017
dc.relation.haspartPaper VII A. S. Zatula, M. J. Ryding, and E. Uggerud. Concerted proton migration along short hydrogen bond wires in bipyridine/water clusters. Physical Chemistry Chemical Physics, 2012, 14, p. 13907-13909. The paper is removed from the thesis in DUO due to publisher restrictions. The published version is available at:http://dx.doi.org/10.1039/c2cp42060k
dc.relation.urihttp://dx.doi.org/10.1039/c0cp00416b
dc.relation.urihttp://dx.doi.org/10.1039/c1cp21070j
dc.relation.urihttp://dx.doi.org/10.5194/acp-12-2809-2012
dc.relation.urihttp://dx.doi.org/10.1021/jp3021326
dc.relation.urihttp://dx.doi.org/10.1255/ejms.1172
dc.relation.urihttp://dx.doi.org/10.1016/j.ijms.2012.07.017
dc.relation.urihttp://dx.doi.org/10.1039/c2cp42060k
dc.titleExperimental and computational studies of dynamic processes in ionic water clustersen_US
dc.typeDoctoral thesisen_US
dc.date.updated2014-02-05en_US
dc.creator.authorZatula, Alexey S.en_US
dc.subject.nsiVDP::440en_US
cristin.unitcode151200en_US
cristin.unitnameKjemisk institutten_US
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.au=Zatula, Alexey S.&rft.title=Experimental and computational studies of dynamic processes in ionic water clusters&rft.inst=University of Oslo&rft.date=2012&rft.degree=Doktoravhandlingen_US
dc.identifier.urnURN:NBN:no-33594en_US
dc.type.documentDoktoravhandlingen_US
dc.identifier.duo176810en_US
dc.contributor.supervisorEinar Uggerud, Trygve Helgaker, Svein Samdalen_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/34838/1/dravhandling-zatula.pdf


Files in this item

Appears in the following Collection

Hide metadata