Hide metadata

dc.date.accessioned2013-03-12T08:20:16Z
dc.date.available2013-03-12T08:20:16Z
dc.date.issued2006en_US
dc.date.submitted2009-11-18en_US
dc.identifier.urihttp://hdl.handle.net/10852/10535
dc.description.abstractRecent work [4] has shown that the Degasperis-Procesi equation is well-posed in the class of (discontinuous) entropy solutions. In the present paper we construct numerical schemes and prove that they converge to entropy solutions. Additionally, we provide several numerical examples accentuating that discontinuous (shock) solutions form independently of the smoothness of the initial data. Our focus on discontinuous solutions contrasts notably with the existing literature on the Degasperis-Procesi equation, which seems to emphasize similarities with the Camassa-Holm equation (bi-Hamiltonian structure, integrabillity, peakon solutions, H1 as the relevant functional space).eng
dc.language.isoengen_US
dc.publisherMatematisk Institutt, Universitetet i Oslo
dc.relation.ispartofPreprint series. Pure mathematics http://urn.nb.no/URN:NBN:no-8076en_US
dc.relation.urihttp://urn.nb.no/URN:NBN:no-8076
dc.titleNUMERICAL SCHEMES FOR COMPUTING DISCONTINUOUS SOLUTIONS OF THE DEGASPERIS-PROCESI EQUATIONen_US
dc.typeResearch reporten_US
dc.date.updated2009-11-18en_US
dc.creator.authorCoclite, Giuseppe M.en_US
dc.creator.authorKarlsen, Kenneth H.en_US
dc.creator.authorRisebro, Nils Henriken_US
dc.subject.nsiVDP::410en_US
dc.identifier.urnURN:NBN:no-23533en_US
dc.type.documentForskningsrapporten_US
dc.identifier.duo96967en_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/10535/1/pm06-06.pdf


Files in this item

Appears in the following Collection

Hide metadata