Hide metadata

dc.date.accessioned2013-03-12T08:09:59Z
dc.date.available2013-03-12T08:09:59Z
dc.date.issued2006en_US
dc.date.submitted2006-05-19en_US
dc.identifier.urihttp://hdl.handle.net/10852/9455
dc.description.abstractWe study two simple multiresoultion analyses and their stability in the L1-norm: Faber decomposition and C1 quadratic Hermite interpolation, both with nonuniform knot sequences. The use of the L1 norm is natural in many CAGD applications and it leads to schemes which are faster and simpler to implement than the wavelet schemes based on the L2 norm. We have chosen to discuss quadratic Hermite interpolation because (i) it is a C1 scheme with nice shape preserving properties, (ii) we have a certain sup norm stability in the wavelet spaces, (iii) there are local support bases for these spaces, (iv) the decomposition coefficients can be determined explicitly in real time, (v) it generalizes to splines over triangulations.nor
dc.language.isoengen_US
dc.relation.ispartofResearch report http://urn.nb.no/URN:NBN:no-35645en_US
dc.relation.urihttp://urn.nb.no/URN:NBN:no-35645
dc.titleMultiresolution analysis based on quadratic Hermite interpolation : Part 1: piecewise polynomial curvesen_US
dc.typeResearch reporten_US
dc.date.updated2006-05-19en_US
dc.creator.authorDæhlen, Mortenen_US
dc.creator.authorLyche, Tomen_US
dc.creator.authorMørken, Knuten_US
dc.creator.authorSeidel, Hans-Peteren_US
dc.subject.nsiVDP::420en_US
dc.identifier.urnURN:NBN:no-12230en_US
dc.type.documentForskningsrapporten_US
dc.identifier.duo41326en_US
dc.identifier.bibsys060855215en_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/9455/1/paper_complete.pdf


Files in this item

Appears in the following Collection

Hide metadata