• English
    • Norsk
  • English 
    • English
    • Norsk
  • Administration
View Item 
  •   Home
  • Øvrige samlinger
  • Høstingsarkiver
  • CRIStin høstingsarkiv
  • View Item
  •   Home
  • Øvrige samlinger
  • Høstingsarkiver
  • CRIStin høstingsarkiv
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Flexible Bayesian Nonlinear Model Configuration

Hubin, Aliaksandr; Storvik, Geir; Frommlet, Florian
Journal article; PublishedVersion; Peer reviewed
View/Open
Flexible_Bayesi ... on_JAIR__SUBMISSION_-3.pdf (517.8Kb)
Year
2021
Permanent link
http://urn.nb.no/URN:NBN:no-94299

CRIStin
1971489

Metadata
Show metadata
Appears in the following Collection
  • Matematisk institutt [2667]
  • CRIStin høstingsarkiv [22204]
Original version
The journal of artificial intelligence research. 2021, 72, 901-942, DOI: https://doi.org/10.1613/JAIR.1.13047
Abstract
Regression models are used in a wide range of applications providing a powerful scientific tool for researchers from different fields. Linear, or simple parametric, models are often not sufficient to describe complex relationships between input variables and a response. Such relationships can be better described through flexible approaches such as neural networks, but this results in less interpretable models and potential overfitting. Alternatively, specific parametric nonlinear functions can be used, but the specification of such functions is in general complicated. In this paper, we introduce a flexible approach for the construction and selection of highly flexible nonlinear parametric regression models. Nonlinear features are generated hierarchically, similarly to deep learning, but have additional flexibility on the possible types of features to be considered. This flexibility, combined with variable selection, allows us to find a small set of important features and thereby more interpretable models. Within the space of possible functions, a Bayesian approach, introducing priors for functions based on their complexity, is considered. A genetically modified mode jumping Markov chain Monte Carlo algorithm is adopted to perform Bayesian inference and estimate posterior probabilities for model averaging. In various applications, we illustrate how our approach is used to obtain meaningful nonlinear models. Additionally, we compare its predictive performance with several machine learning algorithms.
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy
 

 

For students / employeesSubmit master thesisAccess to restricted material

Browse

All of DUOCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

For library staff

Login
RSS Feeds
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy