Hide metadata

dc.date.accessioned2021-01-23T19:23:03Z
dc.date.available2021-01-23T19:23:03Z
dc.date.created2021-01-14T22:25:12Z
dc.date.issued2020
dc.identifier.citationde Jorge Henriques, Vasco Manuel Nelson, Chris J. Rouppe van der Voort, Luc Mathioudakis, Mihalis . Umbral chromospheric fine structure and umbral flashes modelled as one: The corrugated umbra. Astronomy and Astrophysics (A & A). 2020, 642
dc.identifier.urihttp://hdl.handle.net/10852/82546
dc.description.abstractContext. The chromosphere of the umbra of sunspots features an assortment of dynamic fine structures that are poorly understood and often studied separately. Small-scale umbral brightenings (SSUBs), umbral microjets, spikes or short dynamic fibrils (SDFs), and umbral dark fibrils are found in any observation of the chromosphere with sufficient spatial resolution performed at the correct umbral flash stage and passband. Understanding these features means understanding the dynamics of the umbral chromosphere. Aims. We aim to fully understand the dynamics of umbral chromosphere through analysis of the relationships between distinct observed fine features and to produce complete models that explain both spectral profiles and the temporal evolution of the features. We seek to relate such understanding to umbral flashes. Methods. We studied the spatial and spectral co-evolution of SDFs, SSUBs, and umbral flashes in Ca  II 8542 Å spectral profiles. We produced models that generate the spectral profiles for all classes of features using non-local thermodynamic equilibrium radiative transfer with a recent version of the NICOLE inversion code. Results. We find that both bright SSUBs and dark SDF structures are described with a continuous feature in the parameter space that is distinct from the surroundings even in pixel-by-pixel inversions. We find a phase difference between such features and umbral flashes in both inverted line-of-sight velocities and timing of the brightenings. For umbral flashes themselves we resolve, for the first time in inversion-based semi-empirical modelling, the pre-flash downflows, post-flash upflows, and the counter-flows present during the umbral flash phase. We further present a simple time-dependent cartoon model that explains the dynamics and spectral profiles of both fine structure, dark and bright, and umbral flashes in umbral chromospheres. Conclusions. The similarity of the profiles between the brightenings and umbral flashes, the pattern of velocities obtained from the inversions, and the phase relationships between the structures all lead us to put forward that all dynamic umbral chromospheric structures observed to this date are a locally delayed or locally early portion of the oscillatory flow pattern that generates flashes, secondary to the steepening large-scale acoustic waves at its source. Essentially, SSUBs are part of the same shock or merely compression front responsible for the spatially larger umbral flash phenomenon, but out of phase with the broader oscillation.
dc.languageEN
dc.titleUmbral chromospheric fine structure and umbral flashes modelled as one: The corrugated umbra
dc.typeJournal article
dc.creator.authorde Jorge Henriques, Vasco Manuel
dc.creator.authorNelson, Chris J.
dc.creator.authorRouppe van der Voort, Luc
dc.creator.authorMathioudakis, Mihalis
cristin.unitcode185,15,3,40
cristin.unitnameRosseland senter for solfysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1871701
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy and Astrophysics (A & A)&rft.volume=642&rft.spage=&rft.date=2020
dc.identifier.jtitleAstronomy and Astrophysics (A & A)
dc.identifier.volume642
dc.identifier.pagecount18
dc.identifier.doihttps://doi.org/10.1051/0004-6361/202038538
dc.identifier.urnURN:NBN:no-85424
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0004-6361
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/82546/2/aa38538-20.pdf
dc.type.versionPublishedVersion
cristin.articleidA215
dc.relation.projectNFR/262622


Files in this item

Appears in the following Collection

Hide metadata