Hide metadata

dc.date.accessioned2020-06-24T18:23:34Z
dc.date.available2020-06-24T18:23:34Z
dc.date.created2019-09-27T10:11:52Z
dc.date.issued2019
dc.identifier.citationSmith, Steve Duff, Eugene Groves, Adrian Nichols, Thomas E. Jbabdi, Saad Westlye, Lars Tjelta Tamnes, Christian Krog Engvig, Andreas Walhovd, Kristine B Fjell, Anders Martin Johansen-Berg, Heidi Douaud, Gwenaëlle . Structural variability in the human brain reflects fine-grained functional architecture at the population level. Journal of Neuroscience. 2019, 39(31), 6136-6149
dc.identifier.urihttp://hdl.handle.net/10852/77192
dc.description.abstractHuman brain structure topography is thought to be related in part to functional specialization. However, the extent of such relationships is unclear. Here, using a data-driven, multimodal approach for studying brain structure across the lifespan (N = 484, n = 260 females), we demonstrate that numerous structural networks, covering the entire brain, follow a functionally meaningful architecture. These gray matter networks (GMNs) emerge from the covariation of gray matter volume and cortical area at the population level. We further reveal fine-grained anatomical signatures of functional connectivity. For example, within the cerebellum, a structural separation emerges between lobules that are functionally connected to distinct, mainly sensorimotor, cognitive and limbic regions of the cerebral cortex and subcortex. Structural modes of variation also replicate the fine-grained functional architecture seen in eight well defined visual areas in both task and resting-state fMRI. Furthermore, our study shows a structural distinction corresponding to the established segregation between anterior and posterior default-mode networks (DMNs). These fine-grained GMNs further cluster together to form functionally meaningful larger-scale organization. In particular, we identify a structural architecture bringing together the functional posterior DMN and its anticorrelated counterpart. In summary, our results demonstrate that the relationship between structural and functional connectivity is fine-grained, widespread across the entire brain, and driven by covariation in cortical area, i.e. likely differences in shape, depth, or number of foldings. These results suggest that neurotrophic events occur during development to dictate that the size and folding pattern of distant, functionally connected brain regions should vary together across subjects.
dc.languageEN
dc.titleStructural variability in the human brain reflects fine-grained functional architecture at the population level
dc.typeJournal article
dc.creator.authorSmith, Steve
dc.creator.authorDuff, Eugene
dc.creator.authorGroves, Adrian
dc.creator.authorNichols, Thomas E.
dc.creator.authorJbabdi, Saad
dc.creator.authorWestlye, Lars Tjelta
dc.creator.authorTamnes, Christian Krog
dc.creator.authorEngvig, Andreas
dc.creator.authorWalhovd, Kristine B
dc.creator.authorFjell, Anders Martin
dc.creator.authorJohansen-Berg, Heidi
dc.creator.authorDouaud, Gwenaëlle
cristin.unitcode185,17,5,0
cristin.unitnamePsykologisk institutt
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1730029
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Neuroscience&rft.volume=39&rft.spage=6136&rft.date=2019
dc.identifier.jtitleJournal of Neuroscience
dc.identifier.volume39
dc.identifier.issue31
dc.identifier.startpage6136
dc.identifier.endpage6149
dc.identifier.doihttps://doi.org/10.1523/JNEUROSCI.2912-18.2019
dc.identifier.urnURN:NBN:no-80319
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0270-6474
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/77192/1/Smith.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/223273
dc.relation.projectNFR/288083
dc.relation.projectNFR/230345
dc.relation.projectNOTUR/NORSTORE/NS9084S


Files in this item

Appears in the following Collection

Hide metadata