Hide metadata

dc.date.accessioned2020-05-29T19:36:23Z
dc.date.available2020-05-29T19:36:23Z
dc.date.created2019-09-27T09:26:26Z
dc.date.issued2020
dc.identifier.citationTambave, Ganesh Jagannath Alme, Johan Barnaföldi, Gergely Gábor Barthel, Rene van den Brink, Anthony Brons, Stephan Chaar, Mamdouh Eikeland, Viljar Nilsen Genov, Georgi Grøttvik, Ola Slettevoll Pettersen, Helge Egil Seime Pastuović̀, Željko Huiberts, Simon Helstrup, Håvard Hetland, Kristin Fanebust Mehendale, Shruti Vineet Meric, Ilker Malik, Qasim Waheed Odland, Odd Harald Papp, Gábor Peitzmann, Thomas Piersimoni, Pierluigi Rehman, Attiq Ur Reidt, Felix Richter, Matthias Røhrich, Dieter Sudár, András Samnøy, Andreas Tefre Seco, Joao Carlos Shafiee, Hesam Skjæveland, Eivind Vågslid Sølie, Jarle Rambo Ullaland, Kjetil Varga-Kofarago, Monika Volz, Lennart Wagner, Boris Yang, Shiming . Characterization of monolithic CMOS pixel sensor chip with ion beams for application in particle computed tomography. Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment. 2019, 00:162626, 1-4
dc.identifier.urihttp://hdl.handle.net/10852/76474
dc.description.abstractParticle computed tomography (pCT) is an emerging imaging modality that promises to reduce range uncertainty in particle therapy. The Bergen pCT collaboration aims to develop a novel pCT prototype based on the ALPIDE monolithic CMOS sensor. The planned prototype consist of two tracking planes forming a rear tracker and Digital Tracking Calorimeter (DTC). The DTC will be made of a 41 layer ALPIDE-aluminum sandwich structure. To enable data acquisition at clinical particle rates, a large multiplicity of particles will be measured using the highly-granular ALPIDE sensor. In this work, a first characterization of the ALPIDE sensor performance in ion beams is conducted. Particle hits in the ALPIDE sensor result in charge clusters whose size is related to the chip response and the particle energy deposit. Firstly, measurements in a 10 MeV He micro beam have been conducted at the SIRIUS microprobe facility of ANSTO to investigate the dependence of the cluster size on the beam position over the ALPIDE pixel. Here, a variation in cluster size depending on the impinging point of the beam was observed. Additional beam tests were conducted at the Heidelberg Ion-Beam Therapy Center (HIT) investigating the cluster size as a function of the deposited energy by protons and He ions in the sensitive volume of the ALPIDE. Results show the expected increase in cluster sizes with deposited energy and a clear difference in cluster sizes for protons and He ions. As a conclusion, the variation in cluster size with the impinging point of the beam has to be accounted for to enable accurate energy loss reconstruction with the ALPIDE. This does, however, not affect the tracking of particles through the final prototype, as for that only the center-of-mass of the cluster is relevant.
dc.languageEN
dc.publisherNorth Holland Publishing Company
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleCharacterization of monolithic CMOS pixel sensor chip with ion beams for application in particle computed tomography
dc.typeJournal article
dc.creator.authorTambave, Ganesh Jagannath
dc.creator.authorAlme, Johan
dc.creator.authorBarnaföldi, Gergely Gábor
dc.creator.authorBarthel, Rene
dc.creator.authorvan den Brink, Anthony
dc.creator.authorBrons, Stephan
dc.creator.authorChaar, Mamdouh
dc.creator.authorEikeland, Viljar Nilsen
dc.creator.authorGenov, Georgi
dc.creator.authorGrøttvik, Ola Slettevoll
dc.creator.authorPettersen, Helge Egil Seime
dc.creator.authorPastuović̀, Željko
dc.creator.authorHuiberts, Simon
dc.creator.authorHelstrup, Håvard
dc.creator.authorHetland, Kristin Fanebust
dc.creator.authorMehendale, Shruti Vineet
dc.creator.authorMeric, Ilker
dc.creator.authorMalik, Qasim Waheed
dc.creator.authorOdland, Odd Harald
dc.creator.authorPapp, Gábor
dc.creator.authorPeitzmann, Thomas
dc.creator.authorPiersimoni, Pierluigi
dc.creator.authorRehman, Attiq Ur
dc.creator.authorReidt, Felix
dc.creator.authorRichter, Matthias
dc.creator.authorRøhrich, Dieter
dc.creator.authorSudár, András
dc.creator.authorSamnøy, Andreas Tefre
dc.creator.authorSeco, Joao Carlos
dc.creator.authorShafiee, Hesam
dc.creator.authorSkjæveland, Eivind Vågslid
dc.creator.authorSølie, Jarle Rambo
dc.creator.authorUllaland, Kjetil
dc.creator.authorVarga-Kofarago, Monika
dc.creator.authorVolz, Lennart
dc.creator.authorWagner, Boris
dc.creator.authorYang, Shiming
cristin.unitcode185,15,4,30
cristin.unitnameElektronikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1729965
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment&rft.volume=00:162626&rft.spage=1&rft.date=2019
dc.identifier.jtitleNuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment
dc.identifier.volume958
dc.identifier.doihttps://doi.org/10.1016/j.nima.2019.162626
dc.identifier.urnURN:NBN:no-79545
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0168-9002
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/76474/4/1-s2.0-S0168900219311258-main-1.pdf
dc.type.versionPublishedVersion
cristin.articleid162626
dc.relation.projectNFR/250858


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International