• English
    • Norsk
  • English 
    • English
    • Norsk
  • Administration
View Item 
  •   Home
  • Øvrige samlinger
  • Høstingsarkiver
  • CRIStin høstingsarkiv
  • View Item
  •   Home
  • Øvrige samlinger
  • Høstingsarkiver
  • CRIStin høstingsarkiv
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Absorbing random walks interpolating between centrality measures on complex networks

Gurfinkel, Alexander Jacob; Rikvold, Per Arne
Journal article; PublishedVersion; Peer reviewed
View/Open
Alex_Centrality ... ion_PRE101_012302_2020.pdf (1.094Mb)
Year
2020
Permanent link
http://urn.nb.no/URN:NBN:no-79312

CRIStin
1781595

Metadata
Show metadata
Appears in the following Collection
  • Fysisk institutt [2509]
  • Det matematisk-naturvitenskapelige fakultet [332]
  • CRIStin høstingsarkiv [16841]
Original version
Physical review. E. 2020, 101 (1):012302, DOI: https://doi.org/10.1103/PhysRevE.101.012302
Abstract
Centrality, which quantifies the importance of individual nodes, is among the most essential concepts in modern network theory. As there are many ways in which a node can be important, many different centrality measures are in use. Here, we concentrate on versions of the common betweenness and closeness centralities. The former measures the fraction of paths between pairs of nodes that go through a given node, while the latter measures an average inverse distance between a particular node and all other nodes. Both centralities only consider shortest paths (i.e., geodesics) between pairs of nodes. Here we develop a method, based on absorbing Markov chains, that enables us to continuously interpolate both of these centrality measures away from the geodesic limit and toward a limit where no restriction is placed on the length of the paths the walkers can explore. At this second limit, the interpolated betweenness and closeness centralities reduce, respectively, to the well-known current-betweenness and resistance-closeness (information) centralities. The method is tested numerically on four real networks, revealing complex changes in node centrality rankings with respect to the value of the interpolation parameter. Nonmonotonic betweenness behaviors are found to characterize nodes that lie close to intercommunity boundaries in the studied networks.
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy
 

 

For students / employeesSubmit master thesisAccess to restricted material

Browse

All of DUOCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

For library staff

Login
RSS Feeds
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy