• English
    • Norsk
  • English 
    • English
    • Norsk
  • Administration
View Item 
  •   Home
  • Øvrige samlinger
  • Høstingsarkiver
  • CRIStin høstingsarkiv
  • View Item
  •   Home
  • Øvrige samlinger
  • Høstingsarkiver
  • CRIStin høstingsarkiv
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Indications for transit-timing variations in the exo-Neptune HAT-P-26b

von Essen, Carolina; Wedemeyer, Sven; Sosa, M. S.; Hjorth, M.; Parkash, V.; Freudenthal, J.; Mallonn, M.; Miculán, R. G.; Zibecchi, L.; Cellone, S.; Torres, A. F.
Journal article; PublishedVersion; Peer reviewed
View/Open
aa31966-17.pdf (603.7Kb)
Year
2019
Permanent link
http://urn.nb.no/URN:NBN:no-77446

CRIStin
1728225

Metadata
Show metadata
Appears in the following Collection
  • Institutt for teoretisk astrofysikk [722]
  • CRIStin høstingsarkiv [16034]
Original version
Astronomy and Astrophysics. 2019, 628:A116, DOI: https://doi.org/10.1051/0004-6361/201731966
Abstract
Upon its discovery, the low-density transiting Neptune HAT-P-26b showed a 2.1σ detection drift in its spectroscopic data, while photometric data showed a weak curvature in the timing residuals, the confirmation of which required further follow-up observations. To investigate this suspected variability, we observed 11 primary transits of HAT-P-26b between March, 2015, and July, 2018. For this, we used the 2.15 m Jorge Sahade Telescope placed in San Juan, Argentina, and the 1.2 m STELLA and the 2.5 m Nordic Optical Telescope, both located in the Canary Islands, Spain. To add to valuable information on the transmission spectrum of HAT-P-26b, we focused our observations in the R-band only. To contrast the observed timing variability with possible stellar activity, we carried out a photometric follow-up of the host star over three years. We carried out a global fit to the data and determined the individual mid-transit times focusing specifically on the light curves that showed complete transit coverage. Using bibliographic data corresponding to both ground and space-based facilities, plus our new characterized mid-transit times derived from parts-per-thousand precise photometry, we observed indications of transit timing variations in the system, with an amplitude of ~4 min and a periodicity of ~270 epochs. The photometric and spectroscopic follow-up observations of this system will be continued in order to rule out any aliasing effects caused by poor sampling and the long-term periodicity.
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy
 

 

For students / employeesSubmit master thesisAccess to restricted material

Browse

All of DUOCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

For library staff

Login
RSS Feeds
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy