Hide metadata

dc.date.accessioned2020-03-27T19:45:32Z
dc.date.available2020-11-28T23:46:07Z
dc.date.created2018-12-23T21:03:48Z
dc.date.issued2019
dc.identifier.citationXu, Kaiqi Chatzitakis, Athanasios Eleftherios Vøllestad, Einar Ruan, Qiushi Tang, Junwang Norby, Truls Eivind . Hydrogen from wet air and sunlight in a tandem photoelectrochemical cell. International journal of hydrogen energy. 2019, 44(2), 587-593
dc.identifier.urihttp://hdl.handle.net/10852/74249
dc.description.abstractA solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and at the same time they can separate the anode from the cathode. In this work, we have made and tested, firstly, a SSPEC cell with a Pt/C electrocatalyst as the cathode electrode, under purely gaseous conditions. The anode was supplied with air of 80% relative humidity (RH) and the cathode with argon. Secondly, we replaced the Pt/C cathode with a photocathode consisting of 2D photocatalytic g-C3N4, which was placed in tandem with the photoanode (tandem-SSPEC). The tandem configuration showed a three-fold enhancement in the obtained photovoltage and a steady-state photocurrent density. The mechanism of operation is discussed in view of recent advances in surface proton conduction in absorbed water layers. The presented SSPEC cell is based on earth-abundant materials and provides a way towards systems of artificial photosynthesis, especially for areas where water sources are scarce and electrical grid infrastructure is limited or nonexistent. The only requirements to make hydrogen are humidity and sunlight.
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleHydrogen from wet air and sunlight in a tandem photoelectrochemical cell
dc.typeJournal article
dc.creator.authorXu, Kaiqi
dc.creator.authorChatzitakis, Athanasios Eleftherios
dc.creator.authorVøllestad, Einar
dc.creator.authorRuan, Qiushi
dc.creator.authorTang, Junwang
dc.creator.authorNorby, Truls Eivind
cristin.unitcode185,15,17,10
cristin.unitnameSenter for Materialvitenskap og Nanoteknologi kjemi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2
dc.identifier.cristin1647073
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International journal of hydrogen energy&rft.volume=44&rft.spage=587&rft.date=2019
dc.identifier.jtitleInternational journal of hydrogen energy
dc.identifier.volume44
dc.identifier.issue2
dc.identifier.startpage587
dc.identifier.endpage593
dc.identifier.doihttps://doi.org/10.1016/j.ijhydene.2018.11.030
dc.identifier.urnURN:NBN:no-77349
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0360-3199
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/74249/2/Wet%2BAir%2BPhotoelectroctalysis_Xu%2Bet%2Bal_R1.pdf
dc.type.versionAcceptedVersion
dc.relation.projectNFR/250261
dc.relation.projectNFR/239211


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International