Hide metadata

dc.date.accessioned2019-12-09T20:32:33Z
dc.date.available2019-12-09T20:32:33Z
dc.date.created2018-11-05T13:40:33Z
dc.date.issued2018
dc.identifier.citationHolm, Sverre . Spring–damper equivalents of the fractional, poroelastic, and poroviscoelastic models for elastography. NMR in Biomedicine. 2018, 31(10), 1-12
dc.identifier.urihttp://hdl.handle.net/10852/71483
dc.description.abstractIn MR elastography, it is common to use an elastic model for the tissue's response in order to interpret the results properly. More complex models, such as viscoelastic, fractional viscoelastic, poroelastic, or poroviscoelastic ones, are also used. These models appear at first sight to be very different, but here it is shown that they may all be expressed in terms of elementary viscoelastic models. For a medium expressed with fractional models, many elementary spring–damper combinations are added, each of them weighted according to a long‐tailed distribution of time constants or relaxation frequencies. This may open up a more physical interpretation of fractional models. The shear‐wave component of the poroelastic model is shown to be modeled exactly by a three‐component Zener model. The extended poroviscoelastic model is found to be equivalent to what is called a non‐standard four‐parameter model. Accordingly, the large number of parameters in the porous models can be reduced to the same number as in their viscoelastic equivalents. While the individual displacements from the solid and fluid parts cannot be measured individually, the main use of the poro(visco)elastic models is therefore as a physics‐based method for determining parameters in a viscoelastic model.
dc.description.abstractSpring–damper equivalents of the fractional, poroelastic, and poroviscoelastic models for elastography
dc.languageEN
dc.publisherJohn Wiley & Sons, Ltd.
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleSpring–damper equivalents of the fractional, poroelastic, and poroviscoelastic models for elastography
dc.typeJournal article
dc.creator.authorHolm, Sverre
cristin.unitcode185,15,5,51
cristin.unitnameForskningsgruppen for digital signalbehandling og bildeanalyse
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1627092
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=NMR in Biomedicine&rft.volume=31&rft.spage=1&rft.date=2018
dc.identifier.jtitleNMR in Biomedicine
dc.identifier.volume31
dc.identifier.issue10
dc.identifier.startpage1
dc.identifier.endpage12
dc.identifier.doihttps://doi.org/10.1002/nbm.3854
dc.identifier.urnURN:NBN:no-74601
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0952-3480
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/71483/1/A2017_Holm_SpringDamperEquivalents_NMRBiomed.pdf
dc.type.versionPublishedVersion
dc.relation.projectEC/H2020/668039


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International