• English
    • Norsk
  • English 
    • English
    • Norsk
  • Administration
View Item 
  •   Home
  • Det medisinske fakultet
  • Institutt for medisinske basalfag
  • Institutt for medisinske basalfag
  • View Item
  •   Home
  • Det medisinske fakultet
  • Institutt for medisinske basalfag
  • Institutt for medisinske basalfag
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Measurement error in regression; model-based bootstrap and penalized regressions

Romeo, Giovanni
Doctoral thesis
View/Open
PhD-Romeo-2019.pdf (695.1Kb)
Year
2019
Permanent link
http://urn.nb.no/URN:NBN:no-73652

Metadata
Show metadata
Appears in the following Collection
  • Institutt for medisinske basalfag [1415]
Abstract
When measurement error is present among the covariates of a regression model it can cause bias in the parameter estimation, interfere with variable selection and lead to a loss of power and to trouble in detecting the true relationship among variables.

In this thesis, we explore the use of the model-based bootstrap, a powerful method that allows for inference when analytical alternatives are not available, when correcting for measurement error. We suggest new methodologies that are able to estimate the bias of the corrected estimators. We also explore heteroscedasticity detection and correction under the presence of measurement error. We compare the available methods for residual analysis, we present a developed model-based bootstrap test for heteroscedasticity, and we show how modelling heteroscedasticity can affect prediction intervals. Finally, we explore penalized regression methods that can correct for measurement error in a high-dimensional context. We evaluate these methods and focus on situations that are relevant in a practical application context, where the measurement error distribution and dependence structure are not known and need to be estimated from the data.
List of papers
Paper I: Buonaccorsi, J.P., Romeo, G., and Thoresen, M. (2018). Model-based bootstrapping when correcting for measurement error with application to logistic regression. Biometrics, 74(1), 135-144. DOI: 10.1111/biom.12730. The article is included in the thesis. Also available at https://doi.org/10.1111/biom.12730
Paper II: Romeo, G., Buonaccorsi, J.P., and Thoresen, M. (2018). Detection and correction of heteroscedasticity under measurement error with non-constant variance. Submitted to Statistics in Medicine. To be published. The paper is not available in DUO awaiting publishing.
Paper III: Romeo, G. and Thoresen, M. (2019) Model selection in high-dimensional noisy data: a simulation study, Journal of Statistical Computation and Simulation, 89:11, 2031-2050, DOI: 10.1080/00949655.2019.1607345. The article is not available in DUO due to publisher restrictions. The published version is available at: https://doi.org/10.1080/00949655.2019.1607345
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy
 

 

For students / employeesSubmit master thesisAccess to restricted material

Browse

All of DUOCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

For library staff

Login
RSS Feeds
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy