Hide metadata

dc.date.accessioned2019-01-17T10:10:58Z
dc.date.available2019-01-17T10:10:58Z
dc.date.created2018-10-19T14:20:46Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/10852/66179
dc.description.abstractWe investigate two-dimensional quantum turbulence and plasticity from a common mathematical perspective, focusing on topological defects as the most important degrees of freedom. Quantum turbulence features quantized vortices which tend to cluster into statistically self-similar structures as a result of the inverse energy cascade. Similarly, the strong interaction between dislocations in single crystals under load leads to characteristic patterns, suggesting a common way of studying the complex nonequilibrium dynamics of the two fields. In the field of turbulence, we benefit from a fruitful interplay between models at different scales, from microscopic quantum field theory, via the semiclassical Gross–Pitaevskii equation, to the more phenomenological point vortex models of larger systems, leading to novel statistical signatures of the self-similar structure of vortices in two-dimensional quantum turbulence. In plasticity, the phase-field crystal model plays a similar mesoscale role to the Gross–Pitaevskii equation in quantum turbu-lence, but there are some problems in applying it to realistic crystals. We attempt to alleviate some of these problems through a more detailed understanding of the elastic and plastic behavior of the phase-field crystal.
dc.languageEN
dc.publisherDet matematisk-naturvitenskapelige fakultet
dc.relation.haspartPaper I: Vortex clustering and universal scaling laws in two-dimensional quantum turbulence. Audun Skaugen and Luiza Angheluta. Physical Review E 93, 032106 (2016). DOI: 10.1103/PhysRevE.93.032106. The article is inckuded in the thesis. Also available at https://doi.org/10.1103/PhysRevE.93.032106
dc.relation.haspartPaper II: Velocity statistics for nonuniform configurations of point vortices. Audun Skaugen and Luiza Angheluta. Physical Review E 93, 042137 (2016). DOI: 10.1103/PhysRevE.93.042137. The article is inckuded in the thesis. Also available at https://doi.org/10.1103/PhysRevE.93.042137
dc.relation.haspartPaper III: Origin of the inverse energy cascade in two-dimensional quantum turbulence. Audun Skaugen and Luiza Angheluta. Physical Review E 95, 052144 (2017). DOI: 10.1103/PhysRevE.95.052144. The article is inckuded in the thesis. Also available in DUO http://urn.nb.no/URN:NBN:no-65759
dc.relation.haspartPaper IV: Dislocation dynamics and crystal plasticity in the phase-field crystal model. Audun Skaugen, Luiza Angheluta and Jorge Viñals. Physical Review B 97, 054113 (2018). DOI: 10.1103/PhysRevB.97.054113. The article is inckuded in the thesis. Also available in DUO http://urn.nb.no/URN:NBN:no-68582
dc.relation.haspartPaper V: Mesoscale model of dislocation motion and crystal plasticity. Audun Skaugen, Luiza Angheluta and Jorge Viñals. Submitted to Physical Review Letters, arXiv:1807.10245. Published as: Separation of Elastic and Plastic Timescales in a Phase Field Crystal Model. Phys. Rev. Lett. 121, 255501. DOI: 10.1103/PhysRevLett.121.255501. The paper is included in the thesis. Also available in DUO http://hdl.handle.net/10852/66180
dc.relation.urihttps://doi.org/10.1103/PhysRevE.93.032106
dc.relation.urihttps://doi.org/10.1103/PhysRevE.93.042137
dc.relation.urihttp://urn.nb.no/URN:NBN:no-65759
dc.relation.urihttp://urn.nb.no/URN:NBN:no-68582
dc.relation.urihttp://hdl.handle.net/10852/66180
dc.titleA unified perspective on two-dimensional quantum turbulence and plasticity
dc.title.alternativeENEngelskEnglishA unified perspective on two-dimensional quantum turbulence and plasticity
dc.typeDoctoral thesis
dc.creator.authorSkaugen, Audun
cristin.unitcode185,15,4,10
cristin.unitnameKondenserte fasers fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
dc.identifier.cristin1621764
dc.identifier.pagecount145
dc.identifier.urnURN:NBN:no-69394
dc.type.documentDoktoravhandling
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/66179/6/PhD--Skaugen--2018.pdf


Files in this item

Appears in the following Collection

Hide metadata