Abstract
For robots to handle the numerous factors that can afect them in the real world, they must adapt to changes and unexpected events. Evolutionary robotics tries to solve some of these issues by automatically optimizing a robot for a speciic environment. Most of the research in this ield, however, uses simpliied representations of the robotic system in software simulations. The large gap between performance in simulation and the real world makes it challenging to transfer the resulting robots to the real world. In this paper, we apply real world multi-objective evolutionary optimization to optimize both control and morphology of a four-legged mammal-inspired robot. We change the supply voltage of the system, reducing the available torque and speed of all joints, and study how this afects both the itness, as well as the morphology and control of the solutions. In addition to demonstrating that this realworld evolutionary scheme for morphology and control is indeed feasible with relatively few evaluations, we show that evolution under the diferent hardware limitations results in comparable performance for low and moderate speeds, and that the search achieves this by adapting both the control and the morphology of the robot.
© The Authors. Publication rights licensed to Association for Computing Machinery. This is the author's version. Not for redistribution. The definitive version was published in GECCO '18: Genetic and Evolutionary Computation Conference, https://doi.org/10.1145/3205455.3205567