Hide metadata

dc.date.accessioned2018-07-09T10:14:54Z
dc.date.available2018-07-09T10:14:54Z
dc.date.created2017-11-07T11:21:52Z
dc.date.issued2017
dc.identifier.citationSand, Maria Samset, Bjørn Hallvard Balkanski, Yves Bauer, Susanne Bellouin, Nicolas Berntsen, Terje Koren Bian, Huisheng Chin, Mian Diehl, Thomas Easter, Richard Ghan, Steve J. Iversen, Trond Kirkevåg, Alf Lamarque, Jean-Francois Lin, Guangxing Liu, Xiaohong Luo, Gan Myhre, Gunnar Van Noije, Twan P.C. Penner, Joyce E. Schulz, Michael Seland, Øyvind Skeie, Ragnhild Bieltvedt Stier, Philip Takemura, Toshihiko Tsigaridis, Kostas Yu, Fangqun Zhang, Kai Zhang, Hua . Aerosols at the poles: an AeroCom Phase II multi-model evaluation. Atmospheric Chemistry and Physics. 2017, 17(19), 12197-12218
dc.identifier.urihttp://hdl.handle.net/10852/62154
dc.description.abstractAtmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD) at 550nm from simulations with 16 global aerosol models from the AeroCom Phase II model intercomparison project with available observations at both poles. We show that the annual mean multi-model median is representative of the observations in Arctic, but that the intermodel spread is large. We also document the geographical distribution and seasonal cycle of the AOD for the individual aerosol species: black carbon (BC) from fossil fuel and biomass burning, sulfate, organic aerosols (OAs), dust, and sea-salt. For a subset of models that represent nitrate and secondary organic aerosols (SOAs), we document the role of these aerosols at high latitudes. The seasonal dependence of natural and anthropogenic aerosols differs with natural aerosols peaking in winter (sea-salt) and spring (dust), whereas AOD from anthropogenic aerosols peaks in late spring and summer. The models produce a median annual mean AOD of 0.07 in the Arctic (defined here as north of 60°N). The models also predict a noteworthy aerosol transport to the Antarctic (south of 70°S) with a resulting AOD varying between 0.01 and 0.02. The models have estimated the shortwave anthropogenic radiative forcing contributions to the direct aerosol effect (DAE) associated with BC and OA from fossil fuel and biofuel (FF), sulfate, SOAs, nitrate, and biomass burning from BC and OA emissions combined. The Arctic modelled annual mean DAE is slightly negative (−0.12W m−2), dominated by a positive BC FF DAE in spring and a negative sulfate DAE in summer. The Antarctic DAE is governed by BC FF. We perform sensitivity experiments with one of the AeroCom models (GISS modelE) to investigate how regional emissions of BC and sulfate and the lifetime of BC influence the Arctic and Antarctic AOD. A doubling of emissions in eastern Asia results in a 33% increase in Arctic AOD of BC. A doubling of the BC lifetime results in a 39% increase in Arctic AOD of BC. However, these radical changes still fall within the AeroCom model range.en_US
dc.languageEN
dc.publisherCopernicus
dc.rightsAttribution 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.titleAerosols at the poles: an AeroCom Phase II multi-model evaluationen_US
dc.typeJournal articleen_US
dc.creator.authorSand, Maria
dc.creator.authorSamset, Bjørn Hallvard
dc.creator.authorBalkanski, Yves
dc.creator.authorBauer, Susanne
dc.creator.authorBellouin, Nicolas
dc.creator.authorBerntsen, Terje Koren
dc.creator.authorBian, Huisheng
dc.creator.authorChin, Mian
dc.creator.authorDiehl, Thomas
dc.creator.authorEaster, Richard
dc.creator.authorGhan, Steve J.
dc.creator.authorIversen, Trond
dc.creator.authorKirkevåg, Alf
dc.creator.authorLamarque, Jean-Francois
dc.creator.authorLin, Guangxing
dc.creator.authorLiu, Xiaohong
dc.creator.authorLuo, Gan
dc.creator.authorMyhre, Gunnar
dc.creator.authorVan Noije, Twan P.C.
dc.creator.authorPenner, Joyce E.
dc.creator.authorSchulz, Michael
dc.creator.authorSeland, Øyvind
dc.creator.authorSkeie, Ragnhild Bieltvedt
dc.creator.authorStier, Philip
dc.creator.authorTakemura, Toshihiko
dc.creator.authorTsigaridis, Kostas
dc.creator.authorYu, Fangqun
dc.creator.authorZhang, Kai
dc.creator.authorZhang, Hua
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1511754
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Atmospheric Chemistry and Physics&rft.volume=17&rft.spage=12197&rft.date=2017
dc.identifier.jtitleAtmospheric Chemistry and Physics
dc.identifier.volume17
dc.identifier.issue19
dc.identifier.startpage12197
dc.identifier.endpage12218
dc.identifier.doihttp://dx.doi.org/10.5194/acp-17-12197-2017
dc.identifier.urnURN:NBN:no-64750
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn1680-7316
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/62154/2/acp-17-12197-2017.pdf
dc.type.versionPublishedVersion
dc.relation.projectEC/FP7/265307 (PEGASOS)
dc.relation.projectNFR/207711 (EarthClim)
dc.relation.projectNFR/229771 (EVA)
dc.relation.projectEC/FP7/265863 (ACCESS)
dc.relation.projectNOTUR/NORSTORE/nn2345k / ns2345k
dc.relation.projectNORDFORSK/CRAICC


Files in this item

Appears in the following Collection

Hide metadata

Attribution 3.0 Unported
This item's license is: Attribution 3.0 Unported