Hide metadata

dc.date.accessioned2018-07-05T08:24:38Z
dc.date.available2018-07-05T08:24:38Z
dc.date.created2017-09-04T15:48:13Z
dc.date.issued2017
dc.identifier.citationPrieur, Fabrice Jean Gabriel Sapozhnikov, Oleg . Modelling of the Acoustic Radiation Force in elastography. Journal of the Acoustical Society of America. 2017, 142(2), 947-961
dc.identifier.urihttp://hdl.handle.net/10852/62018
dc.description.abstractCopyright (2017) Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America. The following article appeared in The Journal of the Acoustical Society of America 142, 947 (2017) and may be found at https://doi.org/10.1121/1.4998585 Elastography is a non-invasive imaging technique that can assess in vivo tissue stiffness. In shear wave elastography imaging, the acoustic radiation force (ARF) produced by focused ultrasound generates a local force that produces shear waves. The authors compare three existing formulations for the ARF: its full expression in the second-order approximation and two simplified formulations using a quasi-plane wave and an attenuated plane wave approximation. Analytical expressions for the ARF are derived for the special cases of a concave spherical source and a quasi-Gaussian beam. They provide expressions for the resulting ARF and show discrepancies between the different formulations. For strongly divergent or highly focused beams the ARF expressed by the second-order approximation significantly differs from both simplified formulations. However, despite those differences the second-order and quasi-plane wave approximations create identical shear displacements in tissue. To compute the ARF and the displacements produced by a conventional ultrasound probe, the three formulations were incorporated into the k-Wave simulation package. The second-order and quasi-plane wave approximations give different forces but nearly identical displacements while the plane wave approximation significantly differs. It is concluded that to properly take into account the ultrasound field structure, the second-order or quasi-plane wave approximations should be preferably useden_US
dc.languageEN
dc.publisherAcoustical Society of America (ASA)
dc.titleModelling of the Acoustic Radiation Force in elastographyen_US
dc.title.alternativeENEngelskEnglishModelling of the Acoustic Radiation Force in elastography
dc.typeJournal articleen_US
dc.creator.authorPrieur, Fabrice Jean Gabriel
dc.creator.authorSapozhnikov, Oleg
cristin.unitcode185,15,5,51
cristin.unitnameForskningsgruppen for digital signalbehandling og bildeanalyse
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2
dc.identifier.cristin1490851
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of the Acoustical Society of America&rft.volume=142&rft.spage=947&rft.date=2017
dc.identifier.jtitleJournal of the Acoustical Society of America
dc.identifier.volume142
dc.identifier.issue2
dc.identifier.startpage947
dc.identifier.endpage961
dc.identifier.doihttp://dx.doi.org/10.1121/1.4998585
dc.identifier.urnURN:NBN:no-64618
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn0001-4966
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/62018/5/Prieur-Sapozhnikov.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/237887


Files in this item

Appears in the following Collection

Hide metadata