Hide metadata

dc.date.accessioned2018-06-27T09:08:52Z
dc.date.available2018-06-27T09:08:52Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/10852/61959
dc.description.abstractVulkansk aske i atmosfæren medfører en risiko for flytrafikk, såvel som helserisiko for samfunnet og kan påvirke klimaet. I denne avhandlingen er det undersøkt ulike typer aske, lokalisering, konsentrasjon, og spesielt partikkelstørrelse og den implikasjonen denne har for flymotorer. Studien gir en bedre forståelse av risiko for å fly gjennom luft med vulkansk aske. Airborne volcanic ash particles from explosive volcanic eruptions are a known hazard to society, climate, and the environment as well as to aviation. This doctoral thesis has the aim to improve our understanding of volcanic ash properties, in order to mitigate its impacts, with the focus on aviation and to reduce uncertainties and limitations in observations and models in the context of risk analysis of gas turbine powered aircraft flying through volcanic ash clouds. The finding of the doctoral study show that comprehensive volcanic ash particle properties from several types of volcanic ash help to reduce the uncertainty in ash location, concentration, composition, and particle size distribution measurements and modelling. Furthermore, the thesis demonstrates the importance of the size of volcanic ash particles on ingestion mechanisms into an aero-engine and on predictions of volcanic ash dosage during an encountered. This leads to a better understanding of critical safety concentrations inside the engine core section, which is the most vulnerable engine part. The research conducted in this study had a strong-multidisciplinary approach and covers different research fields and techniques, from computational fluid dynamics simulations of particle-laden airflows through an aero-engine, direct in-situ measurements of volcanic ash particles inside an artificially created ash cloud, to laboratory based particle characterization analysis. This PhD work has been carried out at the Norwegian Institute for Air Research and the Department of Geosciences and has been undertaken during the VERTIGO Marie Curie Initial Training Network project, funded through the European Seventh Framework Programme - FP7 2007-2013 (Grant Agreement number 607905).en_US
dc.language.isoenen_US
dc.relation.haspartPaper I: Vogel, A., Durant, A. J., Cassiani, M., Clarkson, R. J., Slaby, M., Krüger, K., and Stohl, A.: Simulation of volcanic ash ingestion by a large turbofan aero-engine: Particle-fan interactions, J. Turbomach., 2018, accepted. The paper is not available in DUO awaiting publishing.
dc.relation.haspartPaper II: Vogel, A., S. Diplas, A. J. Durant, A. S. Azar, M. F. Sunding, W. I. Rose, A. Sytchkova, C. Bonadonna, K. Krüger, and A. Stohl (2017), Reference data set of volcanic ash physicochemical and optical properties, J. Geophys. Res. Atmos., 122, 9485–9514. The article is included in the thesis. Also available at: http://hdl.handle.net/10852/62706
dc.relation.haspartPaper III: Prata, A. J., Dezitter, F., Davies, I., Weber, K., Birnfeld, M., Moriano, D., Bernardo, C., Vogel, A., Prata, G. S., Mather, T. A., Thomas, H. E., Cammas, J. and Weber, M.: Artificial cloud test confirms volcanic ash detection using infrared spectral imaging, Sci. Rep., 6(April), 25620, doi:10.1038/srep25620, 2016. The article is included in the thesis. Also available at: http://urn.nb.no/URN:NBN:no-55333
dc.relation.urihttp://hdl.handle.net/10852/62706
dc.relation.urihttp://urn.nb.no/URN:NBN:no-55333
dc.titleVolcanic Ash: Properties, Atmospheric Effects and Impacts on Aero-Enginesen_US
dc.typeDoctoral thesisen_US
dc.creator.authorVogel, Andreas
dc.identifier.urnURN:NBN:no-64558
dc.type.documentDoktoravhandlingen_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/61959/1/PhD-Vogel-2018.pdf


Files in this item

Appears in the following Collection

Hide metadata