Hide metadata

dc.date.accessioned2018-03-16T15:15:55Z
dc.date.available2019-03-30T23:47:09Z
dc.date.created2017-08-04T13:47:02Z
dc.date.issued2017
dc.identifier.citationIyer, Karthik Herman Schmid, Daniel Walter Planke, Sverre Millett, John . Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate. Earth and Planetary Science Letters. 2017, 467, 30-42
dc.identifier.urihttp://hdl.handle.net/10852/61059
dc.description.abstractVent structures are intimately associated with sill intrusions in sedimentary basins globally and are thought to have been formed contemporaneously due to overpressure generated by gas generation during thermogenic breakdown of kerogen or boiling of water. Methane and other gases generated during this process may have driven catastrophic climate change in the geological past. In this study, we present a 2D FEM/FVM model that accounts for ‘explosive’ vent formation by fracturing of the host rock based on a case study in the Harstad Basin, offshore Norway. Overpressure generated by gas release during kerogen breakdown in the sill thermal aureole causes fracture formation. Fluid focusing and overpressure migration towards the sill tips results in vent formation after only few tens of years. The size of the vent depends on the region of overpressure accessed by the sill tip. Overpressure migration occurs in self-propagating waves before dissipating at the surface. The amount of methane generated in the system depends on TOC content and also on the type of kerogen present in the host rock. Generated methane moves with the fluids and vents at the surface through a single, large vent structure at the main sill tip matching first-order observations. Violent degassing takes place within the first couple of hundred years and occurs in bursts corresponding to the timing of overpressure waves. The amount of methane vented through a single vent is only a fraction (between 5 and 16%) of the methane generated at depth. Upscaling to the Vøring and Møre Basins, which are a part of the North Atlantic Igneous Province, and using realistic host rock carbon content and kerogen values results in a smaller amount of methane vented than previously estimated for the PETM. Our study, therefore, suggests that the negative carbon isotope excursion (CIE) observed in the fossil record could not have been caused by intrusions within the Vøring and Møre Basins alone and that a contribution from other regions in the NAIP is also required to drive catastrophic climate change. Iyer, Karthik, et al. "Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate." Earth and Planetary Science Letters 467 (2017): 30-42. © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.en_US
dc.languageEN
dc.language.isoenen_US
dc.publisherElsevier Science
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleModelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimateen_US
dc.typeJournal articleen_US
dc.creator.authorIyer, Karthik Herman
dc.creator.authorSchmid, Daniel Walter
dc.creator.authorPlanke, Sverre
dc.creator.authorMillett, John
cristin.unitcode185,15,22,20
cristin.unitnameGEO Physics of Geological processes
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2
dc.identifier.cristin1484240
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Earth and Planetary Science Letters&rft.volume=467&rft.spage=30&rft.date=2017
dc.identifier.jtitleEarth and Planetary Science Letters
dc.identifier.volume467
dc.identifier.startpage30
dc.identifier.endpage42
dc.identifier.doihttp://dx.doi.org/10.1016/j.epsl.2017.03.023
dc.identifier.urnURN:NBN:no-63691
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn0012-821X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/61059/2/EPSL-D-16-01158R2.pdf
dc.type.versionAcceptedVersion
dc.relation.projectNFR/223272


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International