Hide metadata

dc.date.accessioned2018-01-03T12:07:54Z
dc.date.available2018-01-03T12:07:54Z
dc.date.created2017-12-21T12:58:09Z
dc.date.issued2017
dc.identifier.citationLauvset, Siv Kari Tjiputra, Jerry Muri, Helene Østlie . Climate engineering and the ocean: effects on biogeochemistry and primary production. Biogeochemistry. 2017, 14, 5675-5691
dc.identifier.urihttp://hdl.handle.net/10852/59499
dc.description.abstractHere we use an Earth system model with interactive biogeochemistry to project future ocean biogeochemistry impacts from the large-scale deployment of three different radiation management (RM) climate engineering (also known as geoengineering) methods: stratospheric aerosol injection (SAI), marine sky brightening (MSB), and cirrus cloud thinning (CCT). We apply RM such that the change in radiative forcing in the RCP8.5 emission scenario is reduced to the change in radiative forcing in the RCP4.5 scenario. The resulting global mean sea surface temperatures in the RM experiments are comparable to those in RCP4.5, but there are regional differences. The forcing from MSB, for example, is applied over the oceans, so the cooling of the ocean is in some regions stronger for this method of RM than for the others. Changes in ocean net primary production (NPP) are much more variable, but SAI and MSB give a global decrease comparable to RCP4.5 (∼ 6 % in 2100 relative to 1971–2000), while CCT gives a much smaller global decrease of ∼ 3 %. Depending on the RM methods, the spatially inhomogeneous changes in ocean NPP are related to the simulated spatial change in the NPP drivers (incoming radiation, temperature, availability of nutrients, and phytoplankton biomass) but mostly dominated by the circulation changes. In general, the SAI- and MSB-induced changes are largest in the low latitudes, while the CCT-induced changes tend to be the weakest of the three. The results of this work underscore the complexity of climate impacts on NPP and highlight the fact that changes are driven by an integrated effect of multiple environmental drivers, which all change in different ways. These results stress the uncertain changes to ocean productivity in the future and advocate caution at any deliberate attempt at large-scale perturbation of the Earth system.en_US
dc.languageEN
dc.language.isoenen_US
dc.publisherSpringer Netherlands
dc.rightsAttribution 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.titleClimate engineering and the ocean: effects on biogeochemistry and primary productionen_US
dc.typeJournal articleen_US
dc.creator.authorLauvset, Siv Kari
dc.creator.authorTjiputra, Jerry
dc.creator.authorMuri, Helene Østlie
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1530990
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Biogeochemistry&rft.volume=14&rft.spage=5675&rft.date=2017
dc.identifier.jtitleBiogeochemistry
dc.identifier.volume14
dc.identifier.startpage5675
dc.identifier.endpage5691
dc.identifier.doihttp://dx.doi.org/10.5194/bg-14-5675-2017
dc.identifier.urnURN:NBN:no-62177
dc.subject.nviVDP::Meteorologi: 453VDP::Oseanografi: 452
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn0168-2563
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/59499/1/Lauvset_etal_bg-14-5675-2017.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/229760
dc.relation.projectNFR/261862
dc.relation.projectNOTUR/NORSTORE/NS9033K
dc.relation.projectNOTUR/NORSTORE/nn9182k
dc.relation.projectNOTUR/NORSTORE/NS1002


Files in this item

Appears in the following Collection

Hide metadata

Attribution 3.0 Unported
This item's license is: Attribution 3.0 Unported