Hide metadata

dc.date.accessioned2017-10-13T13:59:23Z
dc.date.available2018-03-18T23:31:17Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/10852/58773
dc.description.abstractBased on three winters of observational data, we present those ionosphere parameters deemed most critical to realistic space weather ionosphere and thermosphere representation and prediction, in regions impacted by variability in the cusp. The CHAMP spacecraft revealed large variability in cusp thermosphere densities, measuring frequent satellite drag enhancements, up to doublings. The community recognizes a clear need for more realistic representation of plasma flows and electron densities near the cusp. Existing average value models produce order of magnitude errors in these parameters, resulting in large underestimations of predicted drag. We fill this knowledge gap with statistics-based specification of these key parameters over their range of observed values. The European Incoherent Scatter Svalbard Radar tracks plasma flow Vi, electron density Ne, and electron, ion temperatures Te, Ti, with consecutive 2–3 min windshield wipe scans of 1000 × 500 km areas. This allows mapping the maximum Ti of a large area within or near the cusp with high temporal resolution. In magnetic field-aligned mode the radar can measure high-resolution profiles of these plasma parameters. By deriving statistics for Ne and Ti, we enable derivation of thermosphere heating deposition under background and frictional drag-dominated magnetic reconnection conditions. We separate our Ne and Ti profiles into quiescent and enhanced states, which are not closely correlated due to the spatial structure of the reconnection foot point. Use of our data-based parameter inputs can make order of magnitude corrections to input data driving thermosphere models, enabling removal of previous twofold drag errors.en_US
dc.language.isoenen_US
dc.relation.ispartofSkjæveland, Åsmund (2017) Energy inputs and upward motion in the cusp. Doctoral thesis. http://hdl.handle.net/10852/58733
dc.relation.urihttp://hdl.handle.net/10852/58733
dc.titleA statistical survey of heat input parameters into the cusp thermosphereen_US
dc.typeJournal articleen_US
dc.creator.authorSkjæveland, Åsmund Steen
dc.creator.authorCarlson, Herbert C.
dc.creator.authorMoen, Jøran Idar
dc.identifier.cristin1518792
dc.identifier.jtitleJournal of Geophysical Research - Space Physics
dc.identifier.volume122
dc.identifier.doihttps://doi.org/10.1002/2016JA023594
dc.identifier.urnURN:NBN:no-61482
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/58773/1/Skjaveland_et_al-2017.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata