Hide metadata

dc.date.accessioned2017-04-26T14:42:56Z
dc.date.available2017-04-26T14:42:56Z
dc.date.created2017-03-17T22:04:05Z
dc.date.issued2017
dc.identifier.citationWilson, Glen Matthew Østvær, Paul Arne . Two-complete stable motivic stems over finite fields. Algebraic and Geometric Topology. 2017, 17(2), 1059-1104
dc.identifier.urihttp://hdl.handle.net/10852/55279
dc.description.abstractLet ℓ be a prime and q=pν, where p is a prime different from ℓ. We show that the ℓ–completion of the nth stable homotopy group of spheres is a summand of the ℓ–completion of the (n,0) motivic stable homotopy group of spheres over the finite field with q elements, Fq. With this, and assisted by computer calculations, we are able to explicitly compute the two-complete stable motivic stems πn,0(Fq)∧2 for 0≤n≤18 for all finite fields and π19,0(Fq)∧2 and π20,0(Fq)∧2 when q≡1mod4 assuming Morel’s connectivity theorem for Fq holds.en_US
dc.languageEN
dc.publisherUniversity of Warwick
dc.titleTwo-complete stable motivic stems over finite fieldsen_US
dc.typeJournal articleen_US
dc.creator.authorWilson, Glen Matthew
dc.creator.authorØstvær, Paul Arne
cristin.unitcode185,15,13,55
cristin.unitnameAlgebra, geometri og topologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1459147
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Algebraic and Geometric Topology&rft.volume=17&rft.spage=1059&rft.date=2017
dc.identifier.jtitleAlgebraic and Geometric Topology
dc.identifier.volume17
dc.identifier.issue2
dc.identifier.startpage1059
dc.identifier.endpage1104
dc.identifier.doi10.2140/agt.2017.17.1059
dc.identifier.urnURN:NBN:no-58079
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn1472-2747
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/55279/2/WOsubmission.pdf
dc.type.versionAcceptedVersion


Files in this item

Appears in the following Collection

Hide metadata