• English
    • Norsk
  • English 
    • English
    • Norsk
  • Administration
View Item 
  •   Home
  • Øvrige samlinger
  • Høstingsarkiver
  • CRIStin høstingsarkiv
  • View Item
  •   Home
  • Øvrige samlinger
  • Høstingsarkiver
  • CRIStin høstingsarkiv
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of hippocampal subfield volumes from 4 to 22 years

Krogsrud, Stine Kleppe; Tamnes, Christian Krog; Fjell, Anders Martin; Amlien, Inge; Grydeland, Håkon; Sulutvedt, Unni; Due-Tønnessen, Paulina; Bjørnerud, Atle; Sølsnes, Anne Elisabeth; Håberg, Asta; Skranes, Jon Sverre; Walhovd, Kristine B
Journal article; AcceptedVersion; Peer reviewed
View/Open
Krogsrud_hippocampus_ms.pdf (733.3Kb)
Year
2014
Permanent link
http://urn.nb.no/URN:NBN:no-52894

CRIStin
1140521

Is part of
Krogsrud, Stine Kleppe (2015) Brain development - Hippocampal subfields, microstructural white matter and relation to working memory. Doctoral thesis.
Metadata
Show metadata
Appears in the following Collection
  • Psykologisk institutt [2861]
  • CRIStin høstingsarkiv [15167]
Original version
Human Brain Mapping. 2014, 35 (11), 5646-5657, DOI: http://dx.doi.org/10.1002/hbm.22576
Abstract
The hippocampus supports several important cognitive functions known to undergo substantial development during childhood and adolescence, for example, encoding and consolidation of vivid personal memories. However, diverging developmental effects on hippocampal volume have been observed across studies. It is possible that the inconsistent findings may attribute to varying developmental processes and functions related to different hippocampal subregions. Most studies to date have measured global hippocampal volume. We aimed to explore early hippocampal development both globally and regionally within subfields. Using cross-sectional 1.5 T magnetic resonance imaging data from 244 healthy participants aged 4–22 years, we performed automated hippocampal segmentation of seven subfield volumes; cornu ammonis (CA) 1, CA2/3, CA4/dentate gyrus (DG), presubiculum, subiculum, fimbria, and hippocampal fissure. For validation purposes, seven subjects were scanned at both 1.5 and 3 T, and all subfields except fimbria showed strong correlations across field strengths. Effects of age, left and right hemisphere, sex and their interactions were explored. Nonparametric local smoothing models (smoothing spline) were used to depict age-trajectories. Results suggested nonlinear age functions for most subfields where volume increases until 13–15 years, followed by little age-related changes during adolescence. Further, the results showed greater right than left hippocampal volumes that seemed to be augmenting in older age. Sex differences were also found for subfields; CA2/3, CA4/DG, presubiculum, subiculum, and CA1, mainly driven by participants under 13 years. These results provide a detailed characterization of hippocampal subfield development from early childhood. Hum Brain Mapp 35:5646–5657, 2014. © 2014 Wiley Periodicals, Inc.

This is the peer reviewed version of the article, which has been published in final form at http://dx.doi.org/10.1002/hbm.22576. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy
 

 

For students / employeesSubmit master thesisAccess to restricted material

Browse

All of DUOCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

For library staff

Login
RSS Feeds
 
Responsible for this website 
University of Oslo Library


Contact Us 
duo-hjelp@ub.uio.no


Privacy policy