Hide metadata

dc.date.accessioned2013-05-22T12:16:00Z
dc.date.available2013-05-22T12:16:00Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/10852/35622
dc.description.abstractThe process of speciation is the splitting of single populations into two or more distinct, reproductively isolated taxa. Common modes of speciation are sympatric, allopatric and parapatric speciation, with speciation in allopatry being the most frequently documented mode to date. In allopatric speciation, geographical barriers physically separate populations, allowing these now isolated groups to evolve reproductive barriers, i.e. barriers to successful reproduction, which can take the form of premating, postmating prezygotic or postzygotic barriers. Species level phylogenies derived from molecular data may provide an indirect record of speciation events, and can, when combined with morphological traits, be used to investigate at what stage in the speciation process (e.g. early speciation, recent speciation, reversed speciation) taxa currently are. In this thesis, I used a range of molecular methods and morphological analysis to investigate different stages in the speciation process. More specifically, I investigated four different species/species complexes exhibiting varying degrees of genetic and morphological divergence in order to investigate where in the speciation process taxa are and to discuss the evolutionary processes involved in the speciation events. First, the phylogeographic pattern of the common redstart (Phoenicurus phoenicurus) was described and the level of genetic divergence quantified. In this system, high divergence within the mitochondrial DNA (5% K2P distance, COI) combined with low morphological divergence appears to reflect reversed speciation. Second, I found a similar pattern of high genetic divergence (1.5-4.1% K2P distance, COI) in the autumnal moth (Epirrita autumnata), for which low morphological divergences have previously been found. Moreover, an association between the moths’ mtDNA divergence and infection by different Wolbachia strains was found, and I suggest that this association maintains the mitochondrial variation. In contrast to these two studies, the bluethroat (Luscinia svecica) subspecies complex was characterized by exhibiting low genetic divergence (mean genetic distance 0.7%, K2P distance, COI) and high morphological differences and, as such, appears to exhibit signs of early speciation. Importantly, these contrasting patterns may be explained by differences in both ecology and sexual selection pressures experienced by each of the species/populations, with the bluethroats being subject to strong diversifying sexual selection for male primary and secondary sexual characters. A third goal of this thesis was to investigate whether sperm characters and genetic markers evolve at different speeds. In the bluethroat subspecies complex, where mitochondrial divergence was low, I found evidence of rapid evolution of sperm morphology, suggesting that rapid evolution of gametes may be an important factor involved in the early stages of speciation. Finally, I studied the black-and-white Ficedula flycatchers, a group of species suggested to have undergone recent speciation, in order to investigate variation in the rate of evolution between the Z chromosome (i.e. sex chromosome) and the autosomes. In this system, I found contrasting patterns in the evolution of the Z chromosome versus the autosomes. Specifically, my results revealed increased divergence and reduced variation on the Z chromosome compared to the autosomes, a finding that is best explained by the faster-Z hypothesis. As the Z chromosome has been linked to sexually selected traits in the Ficedula flycatchers, I suggest the contrasting pattern of evolution on the Z vs. autosome may have implications for the process of speciation processes in these species. In conclusion, my thesis highlights the utility of combining patterns of genetic and phenotypic divergence to identify at what stage of the speciation process taxa occur and how variation in evolutionary rates between traits can contribute to our understanding of the speciation process.
dc.language.isoenen_US
dc.relation.haspartI. Silje Hogner, Terje Laskemoen, Jan T. Lifjeld, Jiri Porkert, Oddmund Kleven, Tamer Albayrak, Bekir Kabasakal and Arild Johnsen (2012). Deep sympatric mitochondrial divergence without reproductive isolation in the common redstart Phoenicurus phoenicurus. Ecology and Evolution 2012; 2(12): 2974–2988. The published version of this paper is available at: https://doi.org/10.1002/ece3.398
dc.relation.haspartII. Kjersti S. Kvie, Silje Hogner, Leif Aarvik, Jan T. Lifjeld, and Arild Johnsen (2013). Deep sympatric mtDNA divergence in the autumnal moth (Epirrita autumnata). Ecology and Evolution 2013; 3(1): 126–144. The published version of this paper is available at: https://doi.org/10.1002/ece3.434
dc.relation.haspartIII. Silje Hogner, Terje Laskemoen, Jan T. Lifjeld, Václav Pavel, Bohumír Chutný, Javier García, Marie-Christine Eybert, Ekaterina Matsyna and Arild Johnsen. Rapid sperm evolution in the bluethroat (Luscinia svecica) subspecies complex. Manuscript to be submitted to Behavioral Ecology and Sociobiology. The published version of this paper is available at: https://doi.org/10.1007/s00265-013-1548-z
dc.relation.haspartIV. Silje Hogner, Stein A. Sæther, Thomas Borge, Torbjørn Bruvik, Arild Johnsen and Glenn-Peter Sætre (2012). Increased divergence but reduced variation on the Z chromosome relative to autosomes in Ficedula flycatchers: differential introgression or the faster-Z effect? Ecology and Evolution 2: 379–396. The published version of this paper is available at: https://doi.org/10.1002/ece3.92
dc.relation.urihttps://doi.org/10.1002/ece3.398
dc.relation.urihttps://doi.org/10.1002/ece3.434
dc.relation.urihttps://doi.org/10.1007/s00265-013-1548-z
dc.relation.urihttps://doi.org/10.1002/ece3.92
dc.titleGenetic divergence, reproductive isolation and the early stages of speciationen_US
dc.typeDoctoral thesisen_US
dc.creator.authorHogner, Silje
dc.identifier.urnURN:NBN:no-34576
dc.type.documentDoktoravhandlingen_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/35622/1/1305_hogner_materie.pdf


Files in this item

Appears in the following Collection

Hide metadata