dc.date.accessioned 2013-03-12T08:23:20Z dc.date.available 2013-03-12T08:23:20Z dc.date.issued 2011 en_US dc.date.submitted 2011-06-06 en_US dc.identifier.citation Haufmann, Torkel Andreas. On Completely Positive Matrices. Masteroppgave, University of Oslo, 2011 en_US dc.identifier.uri http://hdl.handle.net/10852/10860 dc.description.abstract Oppgaven omhandler komplett positive matriser, det vil si matriser som kan skrives på formen A = BB^T der B er elementvis ikkenegativ. Hovedproblemet i denne teorien er å avgjøre hvorvidt en matrise er komplett positiv. I oppgavens første del er en oversikt over noen sentrale resultater i teorien om slike matriser gitt, mens i andre del undersøkes først noen mulige kjegler som er inneholdt i kjeglen av komplett positive matriser, før ikke-eksakte algoritmer for å approksimere en komplett positiv dekomposisjon utforskes. nor dc.description.abstract The thesis concerns completely positive matrices, which is to say matrices of the form A = BB^T where B is elementwise nonnegative. The main unresolved problem in this field is determining whether a given matrix is completely positive. In the first part of the thesis an overview of some central results in the theory of such matrices is given, while in the second part some cones contained in the cone of completely positive matrices are examined first, and then some non-exact algorithms for approximating a completely positive decomposition are explored. eng dc.language.iso eng en_US dc.title On Completely Positive Matrices en_US dc.type Master thesis en_US dc.date.updated 2012-03-11 en_US dc.creator.author Haufmann, Torkel Andreas en_US dc.subject.nsi VDP::413 en_US dc.identifier.bibliographiccitation info:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.au=Haufmann, Torkel Andreas&rft.title=On Completely Positive Matrices&rft.inst=University of Oslo&rft.date=2011&rft.degree=Masteroppgave en_US dc.identifier.urn URN:NBN:no-29224 en_US dc.type.document Masteroppgave en_US dc.identifier.duo 128015 en_US dc.contributor.supervisor Dahl, Geir en_US dc.identifier.bibsys 120519496 en_US dc.identifier.fulltext Fulltext https://www.duo.uio.no/bitstream/handle/10852/10860/1/T_A_Haufmann_thesis-ENDELIG.pdf
﻿