dc.date.accessioned 2013-03-12T08:21:21Z dc.date.available 2013-03-12T08:21:21Z dc.date.issued 2011 en_US dc.date.submitted 2011-05-10 en_US dc.identifier.citation Brandsæter, Andreas. Optimale randbetingelser for det diskrete Laplace-problemet. Masteroppgave, University of Oslo, 2011 en_US dc.identifier.uri http://hdl.handle.net/10852/10727 dc.description.abstract In this master's thesis an optimization problem in relation to a partial differential equation (PDE) called the discrete Laplace problem with Dirichlet boundary conditions is studied. The solution of the optimization problem will provide optimal Dirichlet boundary conditions that allow solution of the discrete Laplace problem giving a best possible approximation to a given finite subset. Moreover, a number of methods that make use of various optimization tools to solve the aforementioned optimization problem are presented. Significant effort is also given to studies of various properties of the solution of the discrete Laplace problem. Theory of partial differential equations and linear optimization are combined, and the reader is expected to have basic knowledge in these subjects. In addition, some knowledge of linear algebra will be beneficial. eng dc.language.iso nob en_US dc.title Optimale randbetingelser for det diskrete Laplace-problemet en_US dc.type Master thesis en_US dc.date.updated 2012-03-10 en_US dc.creator.author Brandsæter, Andreas en_US dc.subject.nsi VDP::410 en_US dc.identifier.bibliographiccitation info:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.au=Brandsæter, Andreas&rft.title=Optimale randbetingelser for det diskrete Laplace-problemet&rft.inst=University of Oslo&rft.date=2011&rft.degree=Masteroppgave en_US dc.identifier.urn URN:NBN:no-29209 en_US dc.type.document Masteroppgave en_US dc.identifier.duo 120735 en_US dc.contributor.supervisor Geir Dahl en_US dc.identifier.bibsys 120517345 en_US dc.identifier.fulltext Fulltext https://www.duo.uio.no/bitstream/handle/10852/10727/1/Brandsaeter-master.pdf
﻿