Hide metadata

dc.date.accessioned2013-03-12T08:19:23Z
dc.date.available2013-03-12T08:19:23Z
dc.date.issued2005en_US
dc.date.submitted2009-11-24en_US
dc.identifier.urihttp://hdl.handle.net/10852/10567
dc.description.abstractWe consider a shallow water equation of Camassa-Holm type, containing nonlinear dispersive effects as well as fourth order dissipative effects. We prove that as the diffusion and dispersion parameters tend to zero, with a condition on the relative balance between these two parameters, smooth solutions of the shallow water equation converge to discontinuous solutions of a scalar conservation law. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the Lp setting.eng
dc.language.isoengen_US
dc.publisherMatematisk Institutt, Universitetet i Oslo
dc.relation.ispartofPreprint series. Pure mathematics http://urn.nb.no/URN:NBN:no-8076en_US
dc.relation.urihttp://urn.nb.no/URN:NBN:no-8076
dc.titleA SINGULAR LIMIT PROBLEM FOR CONSERVATION LAWS RELATED TO THE CAMASSA-HOLM SHALLOW WATER EQUATIONen_US
dc.typeResearch reporten_US
dc.date.updated2009-11-24en_US
dc.creator.authorCoclite, Giuseppe M.en_US
dc.creator.authorKarlsen, Kenneth H.en_US
dc.subject.nsiVDP::410en_US
dc.identifier.urnURN:NBN:no-23601en_US
dc.type.documentForskningsrapporten_US
dc.identifier.duo97209en_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/10567/1/pm13-05.pdf


Files in this item

Appears in the following Collection

Hide metadata