Hide metadata

dc.date.accessioned2013-03-12T08:19:13Z
dc.date.available2013-03-12T08:19:13Z
dc.date.issued2006en_US
dc.date.submitted2009-11-18en_US
dc.identifier.urihttp://hdl.handle.net/10852/10544
dc.description.abstractWe consider higher-order Camassa--Holm equations describing exponential curves of the manifold of smooth orientation preserving diffeomorphisms of the unit circle in the plane. We establish the existence of a strongly continuous semigroup of global weak solutions. We also present some invariant spaces under the action of that semigroup. Moreover, we prove a "weak equals strong" uniqueness result.eng
dc.language.isoengen_US
dc.publisherMatematisk Institutt, Universitetet i Oslo
dc.relation.ispartofPreprint series. Pure mathematics http://urn.nb.no/URN:NBN:no-8076en_US
dc.relation.urihttp://urn.nb.no/URN:NBN:no-8076
dc.titleWELL-POSEDNESS OF HIGHER-ORDER CAMASSA-HOLM EQUATIONSen_US
dc.typeResearch reporten_US
dc.date.updated2009-11-18en_US
dc.creator.authorCoclite, Giuseppe M.en_US
dc.creator.authorHolden, Helgeen_US
dc.creator.authorKarlsen, Kenneth H.en_US
dc.subject.nsiVDP::410en_US
dc.identifier.urnURN:NBN:no-23542en_US
dc.type.documentForskningsrapporten_US
dc.identifier.duo96977en_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/10544/1/pm15-06.pdf


Files in this item

Appears in the following Collection

Hide metadata