
Studies of quantum dots
Ab initio coupled-cluster analysis using OpenCL and

GPU programming

by

Christoffer Hirth

THESIS
for the degree of

MASTER OF SCIENCE

(Master in Computational Physics)

Faculty of Mathematics and Natural Sciences

Department of Physics

University of Oslo

June 2012

Preface

The completion of this thesis marks the end of a story that begun more than 15 years ago.
As a small boy, barely started at elementary school, I pondered everything that crossed
my mind. Standing outside our cottage in the winter watching the stars, and occasionally
also the northern light, I was stunned by the size and the beauty of the universe we live
in. Later, as I watched wood burn in the fireplace, I enjoyed the stories told me about
how the sun’s warmth was stored inside the logs, to be released in winter by lighting a
match.

The decision of going in the direction of natural sciences came early, initially made by
myself, but it would not have been realized if I had not gotten help from people I met on
my way. Whenever I had questions my dad helped feed my curiosity, and whenever my
curiosity let me down my mother gave me the care and comfort I needed.

Throughout years of education I have had both positive and negative experiences.
The best experience was meeting Morten Hjorth-Jensen as the teacher in computational
physics. I know no other professor with the same enthusiasm and excellence, both aca-
demic and pedagogical, and there is no coincidence why I returned half a year later to
discuss topics for a Master’s Thesis with him. Having an office available during the Master
I spent more time at the university, and I appreciate the colleagues who sat close by. I
would like to mention Frank Olsen and Karl Leikanger (for the discussions and the results
obtained by other methods), Jørgen Høgberget (your fresh grind coffee lights up the day),
and Sarah Reimann (learning me German cannot have been easy, good thing we focused
mainly on one word).

The rest of my family also deserves a few words here. My sisters, who have the courage
to always be there for others, even in times when others should have been there for them
instead, and my brother, who is always positive, even when helping me proof read this
thesis. At last, but not at all the least, I appreciate how my girlfriend, soon my wife, is
still there, despite all the days and nights I have spent in front of my computer. It is no
exaggeration to say that I am proud of my family.

To all of you, and others who have helped me during all this time, I owe you my
thanks. Hopefully have I lived up to your expectations, and I look forward to spending
more time with you this summer, before I may resume my story or start a new one.

Christoffer Hirth

Oslo,
June, 2012

3

Contents

Preface 3

1 Introduction 7

I Theory 11

2 Quantum mechanics 13

2.1 Fundamentals . 13

2.1.1 The wave function . 13

2.1.2 Observables . 15

2.1.3 The canonical commutation relation 16

2.1.4 Eigenfunctions . 17

2.1.5 Bra-ket notation . 17

2.1.6 A fundamental summary . 18

2.2 Harmonic oscillator . 19

2.2.1 The ladder operators . 19

2.2.2 Two dimensions . 21

3 Many-body theory 23

3.1 The non-interacting case . 23

3.2 Indistinguishable and identical particles . 24

3.3 Second quantization . 25

3.3.1 Operators . 27

3.3.2 Wick’s theorem . 29

3.4 Diagrams . 31

3.5 Normal-ordered Hamiltonian . 33

4 Systems 35

4.1 Quantum dots . 35

4.1.1 The Schrödinger equation in spherical coordinates 35

4.2 Implementation . 37

4.2.1 Symmetries in the Hamiltonian . 40

4.2.2 Reading elements from file . 42

4.3 Other systems . 47

5

6 CONTENTS

5 Coupled-cluster theory 53
5.1 The exponential ansatz . 53
5.2 Derivation of the CCSD-equations . 54

5.2.1 Diagrammatic rules . 56
5.2.2 The energy equations . 58
5.2.3 The T̂1 equations . 59
5.2.4 The T̂2 equations . 62

5.3 Implementing CCSD . 67
5.4 Hartree-Fock method . 74

5.4.1 Implementing Hartree-Fock . 79

6 OpenCL 83
6.1 General-purpose computing on GPU . 83
6.2 The OpenCL model . 84

6.2.1 Platform model . 84
6.2.2 Execution model . 84
6.2.3 Memory model . 85
6.2.4 Programming model . 87

6.3 Matrix-matrix multiplication . 87
6.3.1 Strassen’s algorithm . 90

6.4 Implementation . 91
6.4.1 Strassen . 91
6.4.2 CLgemm . 94
6.4.3 CLstrassen . 97

II Results 101

7 Results 103
7.1 Code validation . 103

7.1.1 Simple tests with non-interacting systems 103
7.1.2 Effective interaction . 105
7.1.3 Earlier results . 105

7.2 Efficiency . 106
7.2.1 Optimized matrix-matrix multiplication 106
7.2.2 Other implementations . 111

7.3 Convergence analysis . 114
7.4 Lowering the frequency . 117
7.5 Comparison with other methods . 118

7.5.1 Monte-Carlo methods . 120
7.5.2 Full configuration interaction . 122

7.6 Tables . 124

8 Conclusions 147

Bibliography 150

Chapter 1

Introduction

Quantum dots, that is, strongly confined electrons, show a variety of interesting properties.
Of relevance in both experiments and various technical components, is the possibility to
fine tune their electrical and optical properties. Quantum dots can be manufactured by a
number of different techniques in practice, but we have in this thesis employed computer
simulations to study their properties.

In our studies we assume that the confining potential of the quantum dot is a parabolic
harmonic oscillator potential, with a confinement strength ω, resulting in a set of basis
functions defined by the harmonic oscillator. For more than one electron, we aim at find-
ing the ground-state energy by distributing the electrons in the above mentioned basis
states. The coupled-cluster method, widely used in quantum chemistry, atomic, molecular
and nuclear physics, is used in this thesis to study ground-state properties of quantum
dots. Methods based on constructing many-body correlations starting from a basis of
single-particle functions are normally labelled as wave function based methods. Full con-
figuration interation theory and many-body perturbation theory are other examples of
widely used wave function based methods, see for example [1]. An important challenge
to such methods is to be able to estimate the error made in the calculations, in particular
as a function of the truncation in the single-particle basis and truncations in terms of
possible many-particle excitations, which effectively limits the number of many-particle
states involved in the calculations. In practical calculations the number of included basis
functions must be truncated, effectively introducing an error. To understand the conver-
gence of for example various ground state properties in terms of the above truncations,
and the possibility to quantify possible errors are central issues in many-body theory.

This is not the first time quantum dots have been studied using the coupled-cluster
machinery. In fact, some of the calculations done here have also been done previously.
Earlier Master of Science thesis projects have solved the problem, through serial C++
implementations [2, 3, 4], for up to 20 electrons within 420 single-particle basis states.
Solutions are, in coupled-cluster codes, found using an iterative scheme, which may not
converge in certain cases. The programs which were developed in those projects, met
quickly such convergence problems for increasing number of particles and reduced po-
tential strengths. An extension was thus natural in the direction of exploring a parallel
approach in order to increase both the number of particles and the number of included

7

8 CHAPTER 1. INTRODUCTION

basis functions, and at the same time try to overcome the above mentioned convergence
issues.

Doing computations on graphics processing units (GPUs) has gained increased pop-
ularity during the last years. Only recently have GPU implementations for accelerated
coupled-cluster codes emerged, see for example Ref. [5]. However, to the best of our
knowledge, GPU-accelerated coupled-cluster theory has not been applied to the case of
quantum dots.

The aim of this thesis is thus to study quantum dots, and in particular their properties
when bound by a weak confining potential and a larger span of the strength ω of the
confining potential. We also want to study larger systems, both in terms of more electrons
and in terms of a larger single-particle basis size. Hopefully then a higher accuracy may be
obtained and a better understanding of convergence properties may also be achieved. To
realize our goal we have built a library for coupled-cluster theory from the ground and up
with the possibility to accelerate the time-consuming parts through GPU computing [6].

In this thesis we show how we have the possibility to avoid the convergence issues
by applying a step-by-step technique, gradually weakening the confining potential during
simulations, in order to guide the iterative scheme. Such techniques increase the execution
time of the programs, and could therefore not have been realized without having an
efficient program. Compared to previous programs a speed up that improves with the
size of the system is seen. This improved scaling allows us to more than double the
system size, both in terms of the number of electrons and basis functions, until memory
requirements become the limiting factor.

The structure of this thesis is as follows:

• The first part of this thesis, chapters 2 and 3, serves as a theoretical introduction to
the basic theory of quantum mechanics and many-body theory. Important features
and terminologies are discussed, with a focus on theoretical topics that are required
for the understanding of later parts.

• We then discuss different physical systems, with an emphasis on quantum dots in
chapter 4. Various examples on how systems are implemented by sub-classing the
‘System’ base class are given, and we shed some light on how a system can be opti-
mized, both in terms of memory and processing requirements, without compromising
the flexibility of the code.

• In chapter 5 the coupled-cluster method is introduced. Beginning with a more
shallow outline of the method, we will eventually derive the full set of non-linear
equations. In addition to explaining how to implement coupled cluster, the Hartree-
Fock method is also briefly mentioned.

• The last theoretical chapter is chapter 6, leaning more in a programming technical
direction. OpenCL, a standard and a library for accelerated code, is introduced,
with an emphasis on its relevance for programming GPUs. We discuss different
approaches to matrix-matrix multiplication, and how this is decoupled from the
main program, in terms of its own class, to make it easier to employ different
algorithms without changing the entire code base.

9

• Our results, along with discussions and our conclusions close this thesis. We present
results for up to 56 particles in more than 900 basis functions, and for previously
unobtainable weak strengths of the confining single-particle potential. Results and
time usage are benchmarked, both against other coupled-cluster programs and other
methods. Final remarks are made for potential extensions to this project.

Part I

Theory

11

Chapter 2

Quantum mechanics

During a period spanning more that 50 years, from the end of the 19th century till the
late twenties in the previous century, several discoveries were made that could not be
properly explained by the available theoretical approaches based on for example Newto-
nian mechanics. Phenomena like the photoelectric effect, blackbody radiation, Compton
scattering, X-rays etc. were all processes which required a finer resolution of scales, lead-
ing eventually to the theory of quantum mechanics and its postulates, with Schrödinger’s
equation being the new mathematical framework to express the laws of motion at nano
or smaller scales.

2.1 Fundamentals

Objects in classical mechanics have well-defined positions, which can be tracked over a
time interval by Newton’s laws of motion. Once we know the initial state and all forces
present, we can predict the motion of objects until the end of time. It is of course not
doable in practice, because we cannot know all variables, and certainly not to endless
accuracy. We say that Newtonian mechanics is a deterministic theory. Quantum mechan-
ics, with its postulates like its matter-wave duality and Heisenberg’s uncertainty principle,
introduces an approach to describe Nature that represents a probabilistic determinism. In
this chapter we discuss some of the basic tools and postulates needed to describe physical
systems governed by Schrödinger’s equation.

2.1.1 The wave function

We begin with only one electron floating in empty space. To describe this electron we
would construct a so-called wave function, typically written as Ψ(~r, t). If the particle
is influenced by some external potential energy V , we could find the time evolution by
solving the Schrödinger equation,

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + VΨ. (2.1)

It is common to simplify this by defining the Hamiltonian operator,

Ĥ = T̂ + V̂ , (2.2)

13

14 CHAPTER 2. QUANTUM MECHANICS

where T̂ is the operator of kinetic energy,

T̂ =
p̂2

2m
= − ~2

2m
∇2, (2.3)

and V̂ is the potential. Our Hamiltonian thus represents the total energy for this particle.
It is now possible to rewrite the full Schrödinger equation as

i~
∂Ψ

∂t
= ĤΨ. (2.4)

The Schrödinger equation serves as an analog to Newton’s laws. If the initial conditions
for Ψ and the exact potential V̂ are known, we could calculate the wave function for
any time later. All solutions of the Schrödinger equation reside in what is known as the
Hilbert space.

A physicist’s first attempt at solving partial differential equations is to see whether the
technique of separation of variables can be applied or not. We assume that the potential V̂
is time independent and the solutions consist of a time-independent factor ψ, and another
factor depending only on time, τ . If multiple such products are solutions, then it is clear
that any linear combination of these products is a solution too. Thus,

Ψ(~r, t) =
∑
n

cnψn(~r)τn(t). (2.5)

After inserting one term from (2.5) into (2.1), we separate the two factors to appear on
differing sides,

i~
τn(t)

∂τn(t)

∂t
= En = − ~2

ψn(~r)2m
∇2ψn(~r) + V̂ . (2.6)

Here, En is a constant of separation, and we should note that this may fail if our Hamil-
tonian has some explicit time dependency. We can solve this for τn, yielding

dτn(t)

dt
=
En
i~
τn(t)⇒ τn(t) = e−

i
~En . (2.7)

It is necessary to solve the time-independent Schrödinger equation in order to find ψn,

− ~2

2m
∇2ψn(~r) + V̂ ψn(~r) = Enψn(~r)⇒ Ĥψn(~r) = Enψn(~r). (2.8)

The Hamiltonian operator, Ĥ, represents the energy of the wave function it is acting
upon. It is thus clear why the constant of separation was called En.

With the knowledge on how to find the wave function at any time for a specific potential,
it is still not obvious what the interpretation of a wave function is, yet more unclear how
one can extract observable quantities from this construct.

The wave function is a complex function, describing the spatial distribution of a par-
ticle. Born’s statistical interpretation states that the probability of finding a particle in a
region Ω at a time t, is ∫

Ω

Ψ∗(~r, t)Ψ(~r, t)d3~r. (2.9)

2.1. FUNDAMENTALS 15

In order for this to be correct it is customary to work with normalized wave functions,
that is, scaling Ψ with a complex constant1 to enforce that∫ ∞

−∞
|Ψ(~r, t)|2 d3~r = 1. (2.10)

Loosely speaking this enforces that if the particle exists it has to be somewhere, and the
probability to find it if we look everywhere has to be 1. The concept of not knowing where
the particle is leads to many fundamental questions, both physical and philosophical. As
most of these questions lead to an endless discussion with no clear answer (yet), we will
not try to answer them here.

In addition to the spatial distribution varying in time, particles have an intrinsic prop-
erty, possessing a magnetic dipole moment, known as spin. Despite acting similarly to a
charged rotating body in classical electrodynamics, elementary particles have no known
inner structure, making it a different phenomenon. Spin is quantized, as many other
properties in quantum mechanics, and should be accounted for in the wave function by
multiplication of a spin part, χ. Electrons, which form the key focus in this study, have
a spin quantum number s = 1

2
that can be projected in two directions, ±1

2
, often referred

to as up and down. In fact all spatial wave functions in this chapter, ψ, should then have
a total spin-orbital

ψχ↓ or ψχ↑. (2.11)

Degeneracies, multiple particles and spin dependent Hamiltonians can complicate our
theory somewhat, but neither of these effects are encountered in this chapter.

2.1.2 Observables

In quantum mechanics observables are represented by operators. As all measurements
must have a real value, all such operators need to return real expectation values. The
expectation value of an observable with an operator Ô is calculated as2

〈Ô〉 =

∫
Ψ∗ÔΨdx. (2.12)

With the expectation value being real; 〈Ô〉 = 〈Ô〉∗, and therefore also∫
Ψ∗ÔΨdx =

(∫
Ψ∗ÔΨdx

)∗
=

∫ (
ÔΨ
)∗

Ψdx. (2.13)

All operators for observables will need to possess this property when acting on any wave
function, Ψ, within the Hilbert space, referred to as Hermitian or self-adjoint operators.
There are two fundamental examples of operators representing physical observables, po-
sition and momentum. The position has the simplest correspondence,

x̂ = x, (2.14)

1Another possibility is to work with unnormalized wave functions, and always divide these type of
integrals by

∫∞
−∞ |Ψ(~r, t)|2 d3~r.

2Here, and when convenient from now on, we will skip the integration limits and stick to dx to denote
an integral over all space spanned by all variables of freedom.

16 CHAPTER 2. QUANTUM MECHANICS

whereas momentum is represented as

p̂ = −i~∇. (2.15)

Other quantities can be derived from the position and momentum operators using a
reasoning close to classical quantities, e.g. kinetic energy,

T̂ =
1

2
mv̂2 =

p̂2

2m
= − ~2

2m
∇2. (2.16)

2.1.3 The canonical commutation relation

Similar to matrices in linear algebra, not all operators commute. Having two operators
Â and B̂, the order of which they are applied may affect the result, thus in general

ÂB̂ 6= B̂Â. (2.17)

One typically defines the commutator

[Â, B̂] = ÂB̂ − B̂Â, (2.18)

having the properties listed below:

a. Switching order between the two operators changes the sign,

[Â, B̂] = −[B̂, Â]. (2.19)

b. All constants can safely be placed in front of the commutator,

[caÂ, cbB̂] = cacb[Â, B̂]. (2.20)

c. Summation of two operators inside one commutator can be carried out as a sum of
two commutators,

[Â, B̂ + Ĉ] = [Â, B̂] + [Â, Ĉ]. (2.21)

These properties follow directly from the definition (2.18). More properties can be derived,
but we restrict us to the properties of interest later in this thesis.

Even the operators for position and momentum do not commute in quantum mechan-
ics, a fact that can be shown in a few steps. To make the derivation conceptually easier we
let the operators act on an arbitrary test function ΨT , and concentrate on one dimension,
i.e.

[x̂, p̂]ΨT = −i~[x̂,
∂

∂x
]ΨT = −i~

(
x̂
∂

∂x
ΨT −

∂

∂x
(x̂ΨT)

)
. (2.22)

Applying the product rule on the last term we end up with

− i~
(
x̂
∂

∂x
ΨT −ΨT − x̂

∂

∂x
ΨT

)
= i~ΨT . (2.23)

Dropping the test function, we have proved what is known as the canonical commutation
relation,

[x̂, p̂] = i~. (2.24)

2.1. FUNDAMENTALS 17

2.1.4 Eigenfunctions

Letting an observable Ô act on a state Ψ, one may get different results, each with its own
probability. This spectra of results can be either continuous or discrete, and it is of interest
to know if a state yielding the same value each and every time for an operator can be
found. In fact such states exist, and one is already encountered in the time-independent
Schrödinger equation, (2.8), where a state ψn will return the energy En when acted upon
by Ĥ. Such states are called eigenstates, having a corresponding eigenvalue. For any
observable, its eigenstates are found by the eigenvalue equation,

Ôψn = Onψn. (2.25)

A few properties for such functions can be proven [7]:

• All eigenvalues of a Hermitian operator are real.

Using the property of Hermitian operators from eq. (2.13), we have∫
ψ∗nÔψndx =

∫ (
Ôψn

)∗
ψndx⇒ On

∫
ψ∗nψndx = O∗n

∫
ψ∗nψndx, (2.26)

which means On = O∗n, and thus real.

• Different eigenfunctions are orthogonal.

Another form of the condition for Hermitian operators is∫
ψ∗mÔψndx =

∫ (
Ôψm

)∗
ψndx. (2.27)

Despite looking like a stronger condition it is in fact equivalent with eq. (2.13) [7],
resulting in

On

∫
ψ∗mψndx = O∗m

∫
ψ∗mψndx. (2.28)

Since it is already known that the eigenvalues are real there is no other possibility
than

∫
ψ∗mψndx = 0 whenever On 6= Om.

• For any operator with a finite set of eigenfunctions, the eigenfunctions are complete.
They span the Hilbert space, such that any function in this space can be expressed
as a linear combination of eigenfunctions. It can, in fact, not be proven in general for
spectra with infinite number of eigenstates. Nonetheless, it is taken as a necessity,
and thus a restriction on the observable operators.

2.1.5 Bra-ket notation

In daily work the wave functions encountered are seldom written as explicit functions.
One typically refer to states instead, hiding the complexity of dealing with functions and
integrals, into constructs called ‘bra’ and ‘ket’. Dirac introduced this notation in 1930,
and named it after splitting the word ‘bracket’ [8].

18 CHAPTER 2. QUANTUM MECHANICS

A ket state is the right-hand part, where a state Ψ would be represented as |Ψ〉. This
represents a particle, with a corresponding wave function. The ket state can be viewed
as a column vector,

|Ψ〉 =


c0

c1

c2

...

 or |Ψ〉 =


Ψ(x0)
Ψ(x1)
Ψ(x2)
...

 , (2.29)

where the first example has Ψ in a state with a given basis for a finite Hilbert space.
The other example has the ket state represented in an infinite Hilbert space, as there are
infinitely many positions xi.

The bra state is the left-hand part of the bracket, referred to as the ket’s dual, being
the Hermitian transposed3 of corresponding ket. Following the first example in eq. (2.29)
the bra state would be

〈Ψ| =
[
c∗0, c

∗
1, c
∗
2, ...

]
. (2.30)

The expectation values of operators can then be viewed as matrices. This is just a picture,
as most of the vectors will be in infinite dimensional spaces explained by functions. The
notation will, however, give us a linear algebra like syntax, a formalism that ease our daily
work. Operators will in this syntax work in the same way as for wave functions. The dual
part of an operator acting from the left on a ket state, will be the operator’s Hermitian
adjoint acting from the right on a bra state,

Ô|Ψ〉 ←→ 〈Ψ|Ô†. (2.31)

Having introduced these brackets, it is time to define a particularly useful operation,
the inner product. The definition is straight forward in a linear-algebra sense, except that
we need to extended it to an infinite space by the integral

〈Ψi|Ψj〉 =

∫
Ψ∗iΨjdx. (2.32)

Operators can be placed in between the bra and the ket states, reducing the expectation
value from (2.12) to

〈Ô〉 = 〈Ψ|Ô|Ψ〉. (2.33)

The fact that observable operators are Hermitian can now be simplified from (2.13) to

〈Ψ|Ô|Ψ〉 = 〈Ψ|Ô†|Ψ〉, (2.34)

where Ô = Ô† is referred to as self-adjoint.

2.1.6 A fundamental summary

The new syntax of bra-ket notation allows us to summarize quantum mechanics into a
few neatly expressed postulates. Although these postulates are presented in a slightly
different manner by different authors, the main concepts can be put into four postulates:

3Hermitian transposed means the transposed vector, where the complex conjugate is performed on
each element.

2.2. HARMONIC OSCILLATOR 19

Postulate 1: The state of an isolated physical system can be described by a state-vector,
|Ψ〉, within a Hilbert space, H.

Postulate 2: Every physical observable, O, has a corresponding linear Hermitian opera-
tor, Ô, acting on vectors in H.

Postulate 3: A measurement of the quantity O, with a corresponding operator Ô, is
guaranteed to yield one of the operator’s eigenvalues, On, with a certain
probability.

Postulate 4: The state-vector has a time evolution satisfying the Schrödinger equation,

i~
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉. (2.35)

2.2 Harmonic oscillator

In this section we will calculate, using the fundamental theory from previous section, the
energy spectra along with its eigenstates for a system that is simple, but of high interest.
The problem to solve in this thesis is the harmonic oscillator in two dimensions, but to
begin with we will only treat the one dimensional problem, ending up with solutions for
two dimensions at no extra cost.

A classical harmonic oscillator consists of a particle attached to a spring. The farther
the particle moves, the larger the force from the spring, according to Hooke’s law,

F = −kx. (2.36)

A potential field V is simply the negative of the work done, and using this relation, we
can calculate the potential energy as a simple integral,

V = −
∫ x

0

−kxdx =
1

2
kx2 =

1

2
mω2x2, (2.37)

where ω =
√
k/m is called the frequency. This can be inserted into the Hamiltonian by

replacing x with its quantum mechanical operator, found in eq. (2.14). The total Hamil-
tonian reads − ~2

2m
d2

dx2
+ 1

2
mω2x2, leading to the time-independent Schrödinger equation

− ~2

2m

d2

dx2
|ψn〉+

1

2
mω2x2|ψn〉 = En|ψn〉. (2.38)

It may be tempting to attack this problem in a brute force manner. That would however
prove quite tedious, and better strategies exist.

2.2.1 The ladder operators

Following an, at first, unexpected path, we will introduce what is known as the ladder,
or excitation, operator, defined by

â† =

√
mω

2~

(
x̂− ip̂

mω

)
, (2.39)

20 CHAPTER 2. QUANTUM MECHANICS

and its Hermitian adjoint, the de-excitation operator4,

â =

√
mω

2~

(
x̂+

ip̂

mω

)
. (2.40)

The motivation for selecting these two operators may seem unclear, but their product is
of interest,

ââ† =
mω

2~

(
x̂2 +

i

mω
[p̂, x̂] +

p̂2

m2ω2

)
=
mω

2~
x̂2 +

p̂2

2~mω
+

i

2~
[p̂, x̂], (2.41)

where the first two terms are found in the Hamiltonian, and the last term can be expressed
by the canonical commutation relation (2.24),

ââ† =
1

~ω
Ĥ +

1

2
⇒ Ĥ = ~ω

(
ââ† − 1

2

)
. (2.42)

Being able to rewrite our Hamiltonian, it is tempting to investigate these operators
further. In particular, it is of interest to find their commutator. Using the rules of
commutators shown in section 2.1.3 we find,

[â, â†] =
mω

2~

[(
x̂+

ip̂

mω

)
,

(
x̂− ip̂

mω

)]
=
mω

2~
[x̂, x̂] +

i

~
[p̂, x̂] +

1

2~mω
[p̂, p̂], (2.43)

where only the second term is nonzero,

[â, â†] =
i

~
[p̂, x̂] = − i

~
i~ = 1. (2.44)

Because of this, the Hamiltonian can equally well be written in one out of two forms,

Ĥ = ~ω
(
ââ† − 1

2

)
or Ĥ = ~ω

(
â†â+

1

2

)
. (2.45)

The crucial step comes when claiming that one, yet unknown, state, |ψn〉, is a solution
of the time-independent Schrödinger equation, Ĥ|ψn〉 = En|ψn〉. With this in mind, one
may ask what the energy of â†|ψn〉 is,

Ĥ
(
â†|ψn〉

)
= ~ω

(
â†ââ† +

1

2
â†
)
|ψn〉 = ~ωâ†

(
ââ† +

1

2

)
|ψn〉

= ~ωâ†
(
â†â+ 1 +

1

2

)
|ψn〉 = â†

(
Ĥ + ~ω

)
|ψn〉 = (En + ~ω) â†|ψn〉.

(2.46)

The last steps were achieved by exploiting the commutator between the excitation and
de-excitation operator, and then recall that |ψn〉 is an eigenstate of Ĥ. With the same
approach one would also find that

Ĥ (â|ψn〉) = (En − ~ω) â|ψn〉. (2.47)

4One can prove that the excitation and de-excitation operators are the Hermitian adjoint of each
other. It will however serve no purpose to us at this stage.

2.2. HARMONIC OSCILLATOR 21

With these operators we have the possibility to create states with energies at discrete
steps of ~ω, as long as we find at least one state to start out with. It seems reasonable
that there should exist a lower limit, where applying â should give us no new state, viz.

â|ψ0〉 = 0. (2.48)

For convenience it is possible to label this state simply |0〉. By inserting the full expression
for â and solving the differential equation,√

mω

2~

(
x̂+

i

mω

(
−i~ ∂

∂x

))
|0〉 = 0⇒

∫
d|0〉
|0〉

= −mω
~

∫
xdx

⇒|0〉 = Ce−
mω
2~ x

2

,

(2.49)

we get an explicit expression for the lowest-lying state, up to a constant C to be determined
by normalization.

The only remaining task is to find the energy of the ground state, E0. Inserting expres-
sion (2.45) for the Hamiltonian into the time-independent equation, we find

~ω
(
â†â+

1

2

)
|0〉 = ~ωâ†â|0〉+

1

2
~ω|0〉 = E0|0〉. (2.50)

But since â|0〉 = 0, it is clear that E0 = 1
2
~ω, and using the fact that eigenstates exist at

steps of ~ω, the complete energy spectrum is

En =

(
n+

1

2

)
~ω. (2.51)

2.2.2 Two dimensions

So far, we have treated the oscillator problem in only one dimension. Moving to two
dimensions, the actual Hamiltonian of interest changes to

Ĥ = − ~2

2m
∇2 +

1

2
mω2r2 = − ~2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2
mω2

(
x2 + y2

)
. (2.52)

Once again we will, as physicists, attack this by separation of variables, assuming that
the new state |n〉 is a product of independent states in x and y,

|n〉 = |nx〉 ⊗ |ny〉. (2.53)

It is already clear that Ĥ can be written as a sum of two Hamiltonians, where each is
only one dimensional,

Ĥ = Ĥx + Ĥy =

(
− ~2

2m

∂2

∂x2
+

1

2
mω2x2

)
+

(
− ~2

2m

∂2

∂y2
+

1

2
mω2y2

)
. (2.54)

The total time-independent Schrödinger equation now reads

Ĥ|n〉 =
(
Ĥx|nx〉

)
⊗ |ny〉+ |nx〉 ⊗

(
Ĥy|ny〉

)
= En (|nx〉 ⊗ |ny〉) , (2.55)

22 CHAPTER 2. QUANTUM MECHANICS

and since Hx has the eigenstates found by using the ladder operators, with energies
Enx =

(
nx + 1

2

)
~ω, the total energy is

Enx,ny =

(
nx +

1

2

)
~ω +

(
ny +

1

2

)
~ω = (nx + ny + 1) ~ω. (2.56)

Understanding the methods here, with the ladder operators, has a great value. When
moving on to many-body methods, similar constructs, called creation and annihilation
operators, will be used to simplify calculations. Whereas the ladder operators simply
‘moved’ the electron to a state with a different energy, the creation and annihilation
operators will add or remove electrons from a system.

Chapter 3

Many-body theory

It is often insufficient to be able to calculate properties in systems with only one particle.
One would for example be restricted to only hydrogen, if studying atoms. Methods
for many-particle systems have thus been developed, often theoretically exact, but in
practice we must rely on computer programs having a truncation affecting the accuracy
of the results. Different types of approximations, or many-body methods, exist, where
widely used techniques are; full configuration interaction, many-body perturbation theory,
Hartree-Fock theory, Monte-Carlo methods and coupled-cluster theory. Even though we
will focus mainly on the coupled-cluster approach, the concepts from this chapter are
shared by several many-body methods based on wave functions constructed using a single-
particle basis.

3.1 The non-interacting case

The natural starting point for many-body theory is to deal with non-interacting particles.
In this case the Schrödinger equation holds the same form now as it did for one particle
in eq. (2.35). Assuming a time-independent Hamiltonian,

Ĥ =
∑
k

ĥk =
∑
k

t̂k +
∑
k

v̂k, (3.1)

with t̂k and v̂k being the operators for kinetic and potential energy for particle k, the energy
is constant in time and we only need to solve the time-independent Schrödinger equation.
Since the particles are not interacting, this equation is separable, and we assume a total
wave function, |Ψ(λ)〉, being a product of different single-particle spin orbitals |ψ(λ)

k 〉, with

a total energy E(λ) =
∑

k E
(λ)
k ,

Ĥ|Ψ(λ)〉 =

(∑
k

ĥk

)(
|ψ(λ)

1 〉 ⊗ |ψ
(λ)
2 〉 · · · ⊗ |ψ

(λ)
N 〉
)

=
∑
k

E
(λ)
k |Ψ

(λ)〉. (3.2)

Here E
(λ)
k is the energy of particle k, satisfying the single-particle eigenvalue equation,

ĥk|ψ(λ)
k 〉 = E

(λ)
k |ψ

(λ)
k 〉. (3.3)

It is important to note how the subscript refers to the different particles, whereas the
superscript denotes different eigenstates inside a spectrum of energies.

23

24 CHAPTER 3. MANY-BODY THEORY

Electrons are, although it complicates our calculations, interacting through the coulomb
interaction. For this reason we keep this simple separable calculation in memory when we
move on to interacting many-body systems, where correlations play an important role as
corrections to the non-interacting reference energy.

3.2 Indistinguishable and identical particles

An important aspect when considering systems with more than one particle is that elec-
trons are identical and indistinguishable particles. In quantum mechanics it makes no
sense talking about different particles, they are truly identical and impossible to track
one at a time. As a consequence of this, interchanging the coordinates of two particles
should not alter the probability distribution, i.e.

|Ψ|2 = |P̂ijΨ|2. (3.4)

This compact notation is due to the introduction of the permutation operator P̂ij, which
interchanges particles i and j. Equation (3.4) holds only if

P̂ij = ±1, (3.5)

where particles with a symmetric wave function, that is P̂ij = 1, are called bosons, while

particles having an antisymmetric wave function, P̂ij = −1, are called fermions.

Since electrons are fermions we need to construct wave functions that are antisymmetric.
The simple product of single-particle wave functions we assumed in the non-interacting
case is thus not correct. Antisymmetric wave functions are usually expressed as determi-
nants, as proposed by John C. Slater, therefore called Slater determinants [9]. Having a
complete, orthonormal, single-particle basis where N functions, φα, φβ, · · ·φδ, are occupied
by N particles at different positions, ~r1, · · · , ~rN , an N -particle wave function reads

Φα,β,··· ,δ(~r1, · · · , ~rN) =
1√
N !

∣∣∣∣∣∣∣∣∣
φα(~r1) φβ(~r1) · · · φδ(~r1)
φα(~r2) φβ(~r2) · · · φδ(~r2)

...
...

. . .
...

φα(~rN) φβ(~rN) · · · φδ(~rN)

∣∣∣∣∣∣∣∣∣ . (3.6)

The notation here is of importance. Up to now we have looked at the exact solution,
denoted Ψ. In this step the single particle basis φ can be any complete basis, and therefore
Φ is in general not the exact solution. The solution can however be expressed as a linear
combination of slater determinants,

|Ψ(λ)〉 =
∑

α,β,··· ,δ

C
(λ)
α,β,··· ,δ|Φα,β,··· ,δ〉, (3.7)

due to the completeness of our basis functions. Determinants have the property of being
zero whenever two columns are equal. This is a manifestation of the exclusion principle
formulated by Wolfgang Pauli in 1925 [10], two fermions cannot share the same set of
quantum numbers, for which he later received the Nobel prize for in 1945 [11]. Including
the two spin states available for each electron, no more than two electrons can share the
same orbital.

3.3. SECOND QUANTIZATION 25

To incorporate interactions between the electrons, we add an extra term, v̂kl, to Ĥ,

Ĥ =
∑
k

t̂k +
∑
k

v̂k +
1

2

∑
kl

v̂kl, (3.8)

which is a two-body potential between electron k and l, and the factor of 1
2

comes from the
fact that all contributions are counted twice, assuming v̂kl = v̂lk. In the case of electron
structures, these terms are simply all pairs of Coulomb interactions. It is possible to
continue this, by adding three-, four-, up to N-body forces. Three-body forces are often
needed in nuclear physics, but the two-body nature of the coulomb interaction limits our
calculations to only two.

3.3 Second quantization

Limiting ourself to systems of electrons only, we recall the antisymmetric Slater determi-
nant, eq. (3.6), and assuming orthonormal single-particle states,

〈φr|φs〉 = δrs, (3.9)

we fill the determinant with the N lowest lying states. This is called the reference state,
or ground state, having all N particles in states with the lowest possible energies, still
obeying the exclusion principle. From now on, all single-particle states within the reference
determinant will be labeled i, j, ..., whereas states with higher energies are labeled a, b,
The border between states within the determinant and higher states is called the Fermi
level. When referring to states without knowing whether they are above or below the
Fermi level, we will label them p, q, In this representation, the ground state can be
written in the occupancy notation,

|Φ〉 = |ijkl...〉. (3.10)

We will now introduce creation and annihilation operators, similar to the ladder op-
erators in section 2.2.1. Instead of raising/lowering the energy of one electron, these
operators add or remove one electron from the Slater determinant. Denoting an empty
determinant as ‘|〉’, we can fill it to the reference state by adding one electron at a time
using creation operators,

|Φ〉 = î†ĵ†k̂† · · · |〉. (3.11)

This ground state is sometimes written as |0〉 for simplicity. It is also possible to remove
one electron by the annihilation operator, e.g.

ĵ|Φ〉 = ĵ|ijk · · · 〉 = −ĵ|jik · · · 〉 = −|ik · · · 〉. (3.12)

The minus sign here comes from the fact that these operators only alter the left-most
state, and being antisymmetric one needs to multiply a factor of −1 for each permutation
it takes to bring j to the left side of the determinant.

It should not be allowed to annihilate an electron that is not present in the determinant,
neither create an already present one. With this in mind, it is clear that the following

26 CHAPTER 3. MANY-BODY THEORY

two statements must be true;

p̂†|Φ〉 =

{
|Φp〉 if p ∈ a, b, c, · · ·

0 if p ∈ i, j, k, · · ·

p̂|Φ〉 =

{
0 if p ∈ a, b, c, · · ·
|Φp〉 if p ∈ i, j, k, · · ·

(3.13)

where |Φp〉 means the reference state without p, and |Φp〉 means the reference state with
p added. In the particle-hole formalism everything is relative to the reference, where an
added electron is called a particle and a removed one referred to as a hole. Generalizing
this one can have multiple particles and holes. To prevent from creating a 0-determinant,
the hole states must be in i, j, ..., and the particle states in a, b, An example could be

|Φab
ijk〉 = â†b̂†k̂ĵî|Φ〉. (3.14)

Having two particles and three holes, we call this a 2p-3h excitation.

Because of the orthonormal single particle basis (3.9), the determinants will be or-
thonormal too. To be consistent, we define the empty vacuum state to be normalized as
well,

〈|〉 = 1. (3.15)

We see the importance of this when using the fact that creation and annihilation operators
are each others adjoint,

〈Φ|Φ〉 =
(
〈| · · · ĵ î

)(
î†ĵ† · · · |〉

)
= 〈|

(
· · · ĵ î̂i†ĵ† · · · |〉

)
. (3.16)

Since we first add i, j, ... to the vacuum before we remove the same particles, we end out
with a vacuum state again,

〈|
(
· · · ĵ î̂i†ĵ† · · · |〉

)
= 〈|〉 = 1. (3.17)

More rigorously, one may calculate the above using the anti-commutation rules. Similar
to the commutator, the anti-commutator is defined as

[Â, B̂]+ = ÂB̂ + B̂Â. (3.18)

We will start out with the annihilation operators by considering

p̂q̂|qpij · · · 〉 = |ij · · · 〉
q̂p̂|qpij · · · 〉 = −q̂p̂|pqij · · · 〉 = −|ij · · · 〉.

(3.19)

One permutation is required for q̂p̂ since the operators only can act on the leftmost
particle. If neither p nor q is in the determinant then both of the expressions return zero.
In all cases the anti-commutator should be zero, thus

[p̂, q̂]+ = 0. (3.20)

3.3. SECOND QUANTIZATION 27

Considering two creation operators using the same procedure, we find that p̂†q̂† = −q̂†p̂†
if neither p nor q is present in the determinant. If at least one of the two is already present
we get zero. Again the anti-commutator is zero,

[p̂†, q̂†]+ = 0. (3.21)

The last step is to look at one creation, and one annihilation operator. If these two
represent two different states (p 6= q), we have

p̂†q̂|qij · · · 〉 = |pij · · · 〉
q̂p̂†|qij · · · 〉 = q̂|pqij · · · 〉 = −|pij · · · 〉.

(3.22)

With q missing, or p already present in the determinant the anti-commutator is zero,
leading to

[p̂†, q̂]+ = 0 if p 6= q. (3.23)

If p = q, we need to investigate both when p is already present and not,

p̂p̂†|pij · · · 〉 = 0

p̂†p̂|pij · · · 〉 = |pij · · · 〉
p̂p̂†|ij · · · 〉 = |ij · · · 〉
p̂†p̂|ij · · · 〉 = 0,

(3.24)

which leads to the relation
[p̂†, p̂]+ = 1. (3.25)

All together we summarize to,

[p̂, q̂]+ = 0

[p̂†, q̂†]+ = 0

[p̂†, q̂]+ = δpq.

(3.26)

Using the tools that the anti-commutators present, we could once again look at the
normalized inner product

〈i|i〉 = 〈|̂îi†|〉 = 〈| − î†î+ 1|〉 = 〈| − î†î|〉+ 〈|〉 = 〈|〉 = 1. (3.27)

The trick here was to switch place for î and î† by using the anti-commutation relation,
and in the end reason that î|〉 must be zero. For a general (wider) string of operators the
same can be applied, but it is tedious, and better methods exist.

3.3.1 Operators

Suppose we rewrite the Hamiltonian from eq. (3.8) as a sum of two terms, Ĥ(0) and Ĥ(1),
where the first term contains all one-body terms and the second incorporates only the
two body potential between electrons,

Ĥ(0) =
N∑
k=0

(
t̂k + v̂k

)
=

N∑
k=0

ĥ(0)(xk)

Ĥ(1) =
1

2

N∑
kl

v̂kl(xk, xl).

(3.28)

28 CHAPTER 3. MANY-BODY THEORY

Introducing atomic units, that is setting ~ = me = e = 1, these operators can be expressed
neatly as

t̂k = −1

2
∇2

v̂k =
1

2
ω2x2

k (for harmonic oscillator)

v̂kl =
1

|xk − xl|
(for electrons).

(3.29)

Before we express the operators in second quantization, using the creation and an-
nihilation operators, we will define the number operator, which counts the number of
occupied states in a determinant, hence the number of particles,

N̂ =
∑
p

p̂†p̂. (3.30)

This is the first example of a second quantized operator, and the most striking is the
unrestricted sum, with p looping through all values in our basis. In principle, this sum
runs over infinitely many single-particle states. Extending this for the different parts of
our Hamiltonian, the one-body operator becomes

Ĥ(0) =
∑
pq

〈p|ĥ(0)|q〉p̂†q̂, (3.31)

and the two-body operator reads

Ĥ(1) =
1

2

∑
pqrs

〈pq|v̂|rs〉p̂†q̂†ŝr̂

=
1

4

∑
pqrs

〈pq||rs〉p̂†q̂†ŝr̂.
(3.32)

A usual interpretation is that Ĥ(0) excites one particle from q into a state p with a
probability of

〈p|ĥ(0)|q〉 =

∫
φ∗p(x1)ĥ(0)(x1)φq(x1)dx1, (3.33)

whereas the two-body operator excites two particles from the states r and s into p and q,
with a probability amplitude of

〈pq|v̂|rs〉 =

∫ ∫
φ∗p(x1)φ∗q(x2)v̂(x1, x2)φr(x1)φs(x2)dx1dx2. (3.34)

In the two-body case the probability amplitude is written directly as an integral, without
taking |rs〉 as an antisymmetric determinant. To account for this, one often use the
antisymmetric element instead, defined as

〈pq||rs〉 = 〈pq|v|rs〉 − 〈pq|v|sr〉. (3.35)

This expression will still not account for the factor 1√
2

in front of a slater determinant,

which is why we need a factor 1
4

when using this in equation (3.32).

3.3. SECOND QUANTIZATION 29

With these forms of our operators, we can calculate expectation values in a general way
between two determinants. For instance 〈ij|V̂ |kl〉 can be calculated using anticommuta-
tors,

〈ij|V̂ |kl〉 =
1

4

∑
pqrs

〈pq||rs〉〈|ĵ îp̂†q̂†ŝr̂k̂†l̂†|〉 =
1

4

∑
pqrs

〈pq||rs〉〈|ĵ
(
δip − p̂†î

)
q̂†ŝr̂k̂†l̂†|〉

=
1

4

∑
pqrs

〈pq||rs〉〈|δipĵq̂†ŝr̂k̂†l̂† − ĵp̂†îq̂†ŝr̂k̂†l̂†|〉

=
1

4

∑
pqrs

〈pq||rs〉〈|δipδjqŝr̂k̂†l̂† + δipq̂
†ĵŝr̂k̂†l̂† − ĵp̂†îq̂†ŝr̂k̂†l̂†|〉.

(3.36)

The second term on the last line of eq. (3.36) has q̂† as the leftmost operator. Acting
from the left on a vacuum bra state, this leads to zero. The philosophy is to continue this
process, moving creation operators to the left in all terms. The only contributing terms
will then have Kronecker deltas only, i.e.

〈ij|V̂ |kl〉 =
1

4

∑
pqrs

〈pq||rs〉〈|δipδjqδrkδsl − δipδjqδskδrl + δjpδiqδskδrl − δjpδiqδrkδsl|〉

=
1

4
[〈ij||kl〉 − 〈ij||lk〉+ 〈ji||lk〉 − 〈ji||kl〉] = 〈ij||kl〉.

(3.37)

The last step here was to see that all terms are exactly the same, due to the antisymmetric
elements, where

〈ij||kl〉 = −〈ij||lk〉 = 〈ji||lk〉 = −〈ji||kl〉. (3.38)

3.3.2 Wick’s theorem

Anticommutators, as seen in the previous section, are powerful, yet tedious, constructs for
calculation of expectation values. Any state can be transformed into a string of operators
acting on the vacuum, which we can transform further by anticommutators. For strings of
more operators one could automate this process, by using sympy [12] or similar software,
but for closed-form calculations, Wick’s time-independent theorem allows for substantial
simplifications.

Having a string of operators ÂB̂Ĉ..., we define the normal-ordered product{
ÂB̂Ĉ...

}
, (3.39)

as a reordered product, with all creation operators moved to the left, and annihilation
operators to the right. A phase phactor of −1 will arise whenever an odd number of
permutations is needed in the reordering. Such a product is extremely usefull due to
the fact that all expectation values in vacuum yields zero. Furthermore we define a
contraction between two operators as the difference between the original ordering and the
normal ordering,

ÂB̂ = ÂB̂ = ÂB̂ −
{
ÂB̂
}
. (3.40)

30 CHAPTER 3. MANY-BODY THEORY

With this approach, four contractions are possible;

p̂q̂ = p̂q̂ − p̂q̂ = 0

p̂q̂† = p̂q̂† − (−q̂†p̂) = δpq

p̂†q̂ = p̂†q̂ − p̂†q̂ = 0

p̂†q̂† = p̂†q̂† − p̂†q̂† = 0.

(3.41)

If contractions occur within a normal product, a phase factor of −1 will arise from each
permutation that is needed to bring the contracted operators besides each other.

Wick’s theorem [13] states that any string of operators can be rewritten as a sum,
where the first term is the normal-ordered string. The second term is a sum of all possible
normal products with contractions between two operators only. The next term is a sum
of possible contractions between four operators, and so on up to a sum of all possibilities
where all operators are contracted. The nice feature of this theorem is that all products
with normal ordered strings will not give a contribution when evaluated between vacuum
states. In this case only terms that are fully contracted will contribute.

If we have a product of two already normal-ordered operator strings, this is rewritten
as the normal-ordered string off all operators plus all possible contractions between the
first and the second string. As an example we will return to the transition probability
from equation (3.37), using Wick’s theorem instead,

〈ij|V̂ |kl〉 =
1

4

∑
pqrs

〈pq||rs〉〈|ĵ îp̂†q̂†ŝr̂k̂†l̂†|〉

=
1

4

∑
pqrs

〈pq||rs〉〈|ĵ îp̂†q̂†ŝr̂k̂†l̂† + ĵ îp̂†q̂†ŝr̂k̂†l̂† + ĵ îp̂†q̂†ŝr̂k̂†l̂† + ĵ îp̂†q̂†ŝr̂k̂†l̂†|〉

=
1

4

∑
pqrs

〈pq||rs〉〈|δjpδiqδskδrl − δjpδiqδrkδsl + δipδjqδrkδsl − δipδjqδskδrl|〉.

(3.42)

This is not all fully contracted terms, but with a little reasoning it seems clear that the
other terms have at least one contraction that is equal to zero. It is possible to count
the number of crossing lines, instead of moving operators close to each other, to get the
correct phase factor. The number of crossings are (2, 1, 0, 1) in the four terms, leading
to a minus sign in the second and the last term, due to an odd number of crossings.
Comparing (3.42) with (3.37), we see that both yield the correct result, however, using
Wick’s theorem simplifies considerably the algebra.

To further optimize this theorem, one may redefine the normal ordering with moving
all creation operators above the fermi level, and all annihilation operators below the fermi
level, to the left. With this reordering, all expectation values yield zero when evaluated
with respect to the reference state, as a pure consequence of equation (3.13), that is

〈Φ|â† · · · b̂|Φ〉 = 0 or 〈Φ|̂i · · · ĵ†|Φ〉 = 0. (3.43)

3.4. DIAGRAMS 31

The contractions in eq. (3.41) are altered to only two nonzero contractions,

î†ĵ = î†ĵ −
(
−ĵ î†

)
= δij

âb̂† = âb̂† −
(
−b̂†â

)
= δab.

(3.44)

Apart from the redefinition of the normal product, Wick’s theorem is unaltered.

3.4 Diagrams

Although Wick’s theorem adds considerable simplifications to the calculation of various
expectation values, the human brain is, sadly, not well suited for finding complicated
combinations of contractions using Wick’s theorem. As an example, we present a string of
operators arising from the evaluation of the transition probability from a 1p-1h excitation
to another 1p-1h excitation for the two-body potential,

〈Φa
i |V̂ |Φb

j〉 → î†â p̂†q̂†ŝr̂ b̂†ĵ. (3.45)

Although this expression only contains eight operators, it leads to fourteen nonzero, fully
contracted, terms. One needs to be focused and systematic in order to calculate all terms
correctly. However, the brain seems to be good at visualizing mental images, and therefore
a graphical presentation of the formulas could serve us well.

The graphical approach presented here originated in quantum field theory, developed
by Richard Feynman [14, 15]. Although originally meant to be used on time depen-
dent transitions from one state to another, it is presented here without a time ordering
(following [1]). It does, however, restrict the order in which operators are applied.

Diagrams start out with the reference ket state, denoted by two horizontal lines at
the bottom, and end out with the reference bra state, as two horizontal lines at the top.
Particle operators are lines pointing upwards, whereas holes point downwards. In this
fashion, determinants with excitations from the reference state can be visualized as

〈Φa
i | = 〈Φ|̂i†â =

�
ai (3.46)

|Φab
ij 〉 = â†b̂†ĵ î|Φ〉 =

�
a bi j . (3.47)

One-body operators are presented as two electron lines connected to a dashed line
with a cross,

Ĥ(0) =
∑
pq

〈p| ˆh(0)|q̂〉p̂†q̂ =

�q
p (3.48)

32 CHAPTER 3. MANY-BODY THEORY

Two-body operators are represented similarly, but have two incoming and two outgoing
lines due to the two-body nature,

Ĥ(1) =
1

4

∑
pqrs

〈pq||rs〉p̂†q̂†ŝr̂ =

�r s
p

q

. (3.49)

The idea now is to represent contractions by connecting lines, and because only fully
contracted terms are nonzero within the reference state, all lines should be connected. All
free indexes are meant to be summed over, and the matrix elements are found by replacing
q with the label of incoming line and p with the outgoing label in the one-body case. In
the two-body case we replace r/s with left/right incoming line and p/q with left/right
outgoing line. To determine the correct phase factor, one needs to count the number of
hole lines and the number of closed paths. When counting the number of closed paths
we will consider associated particle-hole pairs as if they were connected in the reference
states. The phase factor will in the end be (−1)l+h, where l is the number of closed paths
(loops) and h is the number of hole lines.

To illustrate the use of diagrams, we return to the example in the introduction,
eq. (3.45). This expression is evaluated to four unique ways of connecting the diagrams;

〈Φa
i |V̂ |Φb

j〉 =

(a)︷ ︸︸ ︷

�b

i

j

a
+

(b)︷ ︸︸ ︷

�b

i k a

j

+

�b

i

j k

a

︸ ︷︷ ︸
(c)

+

�b

i k l

j

a

︸ ︷︷ ︸
(d)

.

(3.50)

Term (3.50a) has no free indexes since all lines are connected to the particle and hole
indices already defined in the reference states. The corresponding matrix
element is 〈ja||ib〉. Having two hole lines, one closed loop, and in total
four equal terms,

�
=

�
=

�
=

�
, (3.51)

the total factor in front should be (−1)2+1 · 4 · 1
4

= −1.

Term (3.50b) corresponds to the element δij〈ka||kb〉, where the Kronecker delta function
follows from the contracted hole lines between i and j. There are two hole

3.5. NORMAL-ORDERED HAMILTONIAN 33

lines, two loops, and in total four equal terms,

�
=

�
=

�
=

�
. (3.52)

Term (3.50c) is similar to (3.50b), except how the Kronecker delta connects the particle
lines a and b instead. There are now three hole lines, two loops and four
equal terms;

�
=

�
=

�
=

�
. (3.53)

Term (3.50d) has three hole lines, three loops, but only two equal diagrams can be
created, namely

�
=

�
. (3.54)

We then have in total

〈Φa
i |V̂ |Φb

j〉 =

(a)︷ ︸︸ ︷
(−1)1+2 · 4 · 1

4
〈ja||ib〉+

(b)︷ ︸︸ ︷
(−1)2+2 · 4 · 1

4

∑
k

δij〈ka||kb〉

+ (−1)2+3 · 4 · 1

4

∑
k

δab〈jk||ik〉︸ ︷︷ ︸
(c)

+ (−1)3+3 · 21

4

∑
kl

δabδij〈kl||kl〉︸ ︷︷ ︸
(d)

= −〈ja||ib〉+
∑
k

δij〈ka||kb〉 −
∑
k

δab〈jk||ik〉+
1

2

∑
kl

δabδij〈kl||kl〉.

(3.55)

We will return to diagrams when we derive the coupled cluster equations, but then pre-
sented with a more explicit set of rules for interpretation.

3.5 Normal-ordered Hamiltonian

Based on the second quantized expression for the Hamiltonian from section 3.3.1, we can
apply Wick’s theorem. Defining δpq<F to be a Kronecker delta function where p and q are

below the Fermi level, the string of operators from Ĥ(0) becomes

p̂†q̂ =
{
p̂†q̂
}

+ p̂†q̂ =
{
p̂†q̂
}

+ δpq<F , (3.56)

yielding a new expression for the single-particle interactions,

Ĥ(0) =
∑
pq

〈p|ĥ(0)|q〉
{
p̂†q̂
}

+
∑
i

〈i|ĥ(0)|i〉. (3.57)

34 CHAPTER 3. MANY-BODY THEORY

Similarly for Ĥ(1) we get

p̂†q̂†ŝr̂ =
{
p̂†q̂†ŝr̂

}
+

{
p̂†q̂†ŝr̂

}
+

{
p̂†q̂†ŝr̂

}
+

{
p̂†q̂†ŝr̂

}
+

{
p̂†q̂†ŝr̂

}
+

{
p̂†q̂†ŝr̂

}
+

{
p̂†q̂†ŝr̂

}
=
{
p̂†q̂†ŝr̂

}
− δps<F

{
q̂†r̂
}

+ δpr<F
{
q̂†ŝ
}

+ δqs<F
{
p̂†r̂
}

− δqr<F
{
p̂†ŝ
}
− δps<F δqr<F + δpr<F δqs<F ,

(3.58)

and put back into the second-quantized operator we find

Ĥ(1) =
1

4

∑
pqrs

〈pq||rs〉
{
p̂†q̂†ŝr̂

}
− 1

4

∑
qri

〈iq||ri〉
{
q̂†r̂
}

+
1

4

∑
qsi

〈iq||is〉
{
q̂†ŝ
}

+
1

4

∑
pri

〈pi||ri〉
{
p̂†r̂
}
− 1

4

∑
psi

〈pi||is〉
{
p̂†ŝ
}
− 1

4

∑
ij

〈ij||ji〉+
1

4

∑
ij

〈ij||ij〉.
(3.59)

Indices are merely dummy variables summed freely over, and together with the properties
of antisymmetric interaction elements this can be compressed to

Ĥ(1) =
1

4

∑
pqrs

〈pq||rs〉
{
p̂†q̂†ŝr̂

}
+
∑
pqi

〈pi||qi〉
{
p̂†q̂
}

+
1

2

∑
ij

〈ij||ij〉. (3.60)

Gathering all terms, we have a normal-ordered expression for the Hamiltonian,

Ĥ =
∑
pq

〈p|ĥ(0)|q〉
{
p̂†q̂
}

+
1

4

∑
pqrs

〈pq||rs〉
{
p̂†q̂†ŝr̂

}
+
∑
pqi

〈pi||qi〉
{
p̂†q̂
}

+
∑
i

〈i|ĥ(0)|i〉+
1

2

∑
ij

〈ij||ij〉.
(3.61)

The last two terms in (3.61) are simple constants whereas the first three are all normal-
ordered. Evaluating the energy within the reference state, the first three terms would be
zero leaving us with the last two, i.e.

Eref ≡ 〈Φ0|Ĥ|Φ0〉 =
∑
i

〈i|ĥ(0)|i〉+
1

2

∑
ij

〈ij||ij〉. (3.62)

Normal-ordered terms are expressed through a one-particle operator F̂N and a two-particle
operator V̂N ,

ĤN ≡ Ĥ − Eref = F̂N + V̂N =
∑
pq

fpq{p̂†q̂}+
∑
pqrs

〈pq||rs〉
{
p̂†q̂†ŝr̂

}
, (3.63)

where
fpq = 〈p|ĥ(0)|q〉+

∑
i

〈pi||qi〉. (3.64)

Chapter 4

Systems

4.1 Quantum dots

Strongly confined electrons offer a wide variety of complex and subtle phenomena which
pose severe challenges to existing many-body methods. Quantum dots in particular, that
is, electrons confined in semiconducting heterostructures, exhibit, due to their small size,
discrete quantum levels. The ground states of, for example, circular dots show similar
shell structures and magic numbers as seen for atoms and nuclei [16]. In this thesis we
study quantum dots confined in a nearly two-dimensional thin layer of a semiconductor.
The potential is approximated by a radially symmetric parabolic potential, also called
a harmonic-oscillator potential, for which reason they are termed parabolic or circular
quantum dots.

Small confined systems, such as quantum dots, have become very popular for experi-
mental study. Beyond their possible relevance for nanotechnology, they are highly tunable
in experiments and introduce level quantization and quantum interference in a controlled
way. The possibility to manufacture systems with a tailored electronic structure, may
improve electrical or optical properties of materials, a reason why quantum dots are good
candidates as components in quantum computers [17], optimized solar cells [18], laser
technology [19] and medical imaging [20], to name a few.

4.1.1 The Schrödinger equation in spherical coordinates

Circular quantum dots are said to live in only two dimensions, a consequence of precise
manufacturing techniques, making the layers so thin that we can omit the third dimension
in our computations. The quantum dots are, however, not truly two-dimensional and this
could lead to an error in the calculated energies, see for example Ref. [21].

The harmonic-oscillator potential for two dimensions was encountered in section 2.2.2,
but we will now solve the time-independent Schrödinger equation,

− ~2

2m
∇2ψ +

1

2
mω2r2ψ = Eψ, (4.1)

in spherical coordinates instead of Cartesian coordinates. Assuming that the wave func-
tion can be separated into two functions depending on radial distance, r, and the angle,
ϕ, respectively, we get

ψ = R(r)Y (ϕ). (4.2)

35

36 CHAPTER 4. SYSTEMS

Employing polar coordinates also for the momentum operator, the Schrödinger equation
reads,

− ~2

2m

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

)
R(r)Y (ϕ) +

1

2
mω2r2R(r)Y (ϕ) = ER(r)Y (ϕ). (4.3)

Dividing by ~2R(r)Y (ϕ), multiplying with −2mr2 and reordering terms, we obtain

r2

R(r)

∂2R(r)

∂r2
+

r

R(r)

∂R(r)

∂r
− 2mr2

~2

(
1

2
mω2r2 − E

)
= m2

l = − 1

Y (ϕ)

∂2Y (ϕ)

∂ϕ2
, (4.4)

where ml is our constant of separation. Thus, we have two equations,

r2∂
2R(r)

∂r2
+ r

∂R(r)

∂r
− 2mr2

~2

(
1

2
mω2r2 − E

)
R(r) = m2

lR(r), (4.5)

∂2Y (ϕ)

∂ϕ2
= −m2

l Y (ϕ). (4.6)

Equation (4.6) is easily recognized as an exponential function,

Y (ϕ) = Keimlϕ, (4.7)

where K is to be determined by normalization,∫ 2π

0

Y (ϕ)dϕ = 1⇒ Y (ϕ) =
1√
2π
eimlϕ, (4.8)

and rotational invariance determines ml,

Y (ϕ) = Y (ϕ+ 2π)⇒ eiml2π = 1⇒ ml = 0,±1,±2,±3, (4.9)

Substituting R(r) = ρ(r)r−
1
2 eq. (4.5) is simplified to

− ~2

2m

∂2ρ(r)

∂r2
+

[
1

2
mω2r2 +

~2

2m

m2
l − 1

4

r2

]
ρ(r) = Eρ(r), (4.10)

which is normally called the radial equation. One should note that this is equivalent to
the time-independent Schrödinger equation with an effective potential instead,

Veff (r) = V (r) +
~2

2m

m2
l − 1

4

r2
, (4.11)

and this strategy can be applied to any system with a spherical symmetric potential. The
full solution after normalization, ∫ ∞

0

|ρ(r)|2dr = 1, (4.12)

reads

ψ(r, ϕ) =
1√
2π
R(r)eimlϕ. (4.13)

4.2. IMPLEMENTATION 37

We will not solve eq. (4.10) for the one-particle quantum dot here, since it is time
consuming and somewhat cumbersome. Instead we merely state the results and recom-
mend reading the appendix of Lohne’s master’s thesis [3] for a full derivation. For further
details regarding the harmonic oscillator and solutions to spherically symmetric problems
we recommend reading [7]. The solutions have single-particle energies,

εn,ml,ms = (1 + |ml|+ 2n)ω, (4.14)

with corresponding wave functions,

ψn,ml
=

√
n!

π (n+ |ml|)!
β

1
2

(1+|ml|)r|ml|e−
1
2
βr2L|ml|

n

(
βr2
)
eimlφ. (4.15)

We have used the Laguerre polynomials, L
|ml|
n (βr2), and also defined

β =
mω

~
. (4.16)

Each spatial wave function from eq. (4.15) can have either spin up or spin down.

4.2 Implementation

As a part of this thesis, we have developed a library for running simulations on differ-
ent types of systems. The implementation is based primarily on two major types of
objects; systems and solvers. There are two solvers implemented, Hartree-Fock (HF)
and Coupled-Cluster (CC) theory with singles and doubles (CCSD) to be discussed in
chapter 5, that should work independently of the type of system as long as the system is
derived from the ‘System’ base class. The systems differ, from a computational point of
view, only by the value of the one- and two-particle elements, fpq and 〈pq||rs〉, as well as
the number of hole-states, nh, in our case always equal to the number of particles, and
the number of unoccupied, virtual, particle-states, np.

In theory, having an infinite basis, there would be infinitely many particle-states,
but in actual calculations the basis sets needs to be truncated, that is, we truncate the
number of virtual single-particle states np. This means also that the number of linerarly
independent Slater determinats which can be made, is also limited.

To implement a system we need to store the elements fpq and 〈pq||rs〉 in a reasonable
way. We explain the storage scheme for the one-particle elements first, while the two-
particle part is postponed to section 4.2.1 due to its more complex structure. The different
states p and q are assigned an integer value each, ranging from 0 to n− 1, where n is the
number of basis functions included, n = nh + np. If p is a hole state, labelled with letters
ijkl . . . in our work, we have i = p ∈ [0, nh−1]. On the other hand if p is a particle state,
labelled with the letters abcd . . . , we still begin indexing from zero, a = p − nh ∈ [0, np].
In total we distinguish between three types of indexing:

p ∈ [0, n− 1] (general),

i = p ∈ [0, nh − 1] (p is a hole state),

a = p− nh ∈ [0, np − 1] (p is a particle state).

(4.17)

38 CHAPTER 4. SYSTEMS

Figure 4.1: The indexing sequence used for quantum dots, implemented in ‘HObasis’.

For the harmonic-oscillator basis, states are indexed as in fig. 4.1, first varying ml in
ascending order through all possible values in the lowest-lying shell, holding |ml|+2n = 0
fixed. Even states have spin up whereas odd states have spin down, and after one shell is
filled the indexing starts in the next, |ml|+2n = 1, 2, · · · . The number of states in a basis
and how they are stored is described by the ‘Basis’ class. In addition the mappings between
integer-indexed states and the actual set of quantum numbers are also included. The
actual implementation for the harmonic oscillator, ‘HObasis’, extends the so-called ‘Basis’
class. Through ‘HObasis’ it is possible to query the quantum numbers a given single-
particle state, p, consists of by calling ‘HObasis::stateMap(int p)’, returning a vector of
integer values. As an example for the harmonic oscillator ‘HObasis::stateMap(10)’ would
return a vector 0

2
0

 , (4.18)

interpreted as n = 0 and ml = 2 with spin up (0 =↑ and 1 =↓).

All implementations for different systems should extend the ‘System’ base class, which
has predefined constructs for holding interaction elements. The simplest implementation
of a system can be as simple as shown in listing 4.1, explained as follows;

Line 1: We declare a new subclass of ‘System’. This provides storage objects for both one-
particle and two-particle interactions as well as getter 1 methods to these storage
objects.

Line 4: The most important part in the constructor is to create a sensible ‘Basis’, here using
the default basis with 2 electrons (hole-states) and 10 virtual (particle-)states. The

1In object-oriented design it is common to encapsulate a class’ member objects. Data is then declared
private, and can only be reached through public member functions, dubbed getter methods. The author
of a class may now restrict how data is accessed, for example to prevent a user from changing important
variables.

4.2. IMPLEMENTATION 39

Listing 4.1: Example on how to implement a specific system by extending the ‘System’
super class.

1 class SpecificSystem1 : public System

2 {

3 public:

4 SpecificSystem1 ()

5 {

6 std:: size_t n_elec = 2;

7 std:: size_t n_virtual = 10;

8 this ->basis = new Basis(n_elec , n_virtual);

9 fillMatrixElements ();

10 }

11

12 virtual double f_elem(std:: size_t p, std:: size_t q) const

13 {

14 double h0_pq = //Some expression for h0

15 double u_pq = 0;

16 for(size_t i = 0; i < basis ->get_nH (); i++)

17 u_pq += v_elem(p, i, q, i);

18 return h0_pq + u_pq;

19 }

20

21 virtual double v_elem(std:: size_t p, std:: size_t q, std::

size_t r, std:: size_t s) const

22 {

23 double v_pqrs = //Some expression for <pq||rs >

24 return v_pqrs;

25 }

26 };

method ‘fillMatrixElements()’ is defined in ‘System’ and will fill all storage objects
with values from ‘f elem’ and ‘v elem’ using the size of our basis, stored in ‘basis’.

Line 12: The normal-ordered one-particle element fpq, defined in eq. (3.64), is calculated by
‘f elem’.

Line 21: The method ‘v elem’ defines a way to calculate the antisymmetrized two-particle
element 〈pq||rs〉, defined in eq. (3.35).

One should in particular note that these overridden functions are declared as virtual ones.
In this way it is possible to create solvers taking a pointer to any ‘System’, still invoking
the methods from the correct subclass. Listing 4.2 illustrates this, using a ‘System’ pointer
to access one single-particle element from a specific subclass.

One-particle elements are stored in three matrices: ‘f hh’, ‘f ph’ and ‘f pp’. The three
matrices are blocks sorted by the domain the two indices p and q belong to. If both indices

40 CHAPTER 4. SYSTEMS

Listing 4.2: A subclass has implemented the function ‘f elem()’ returning the element
f02. The ‘System’ base class has this method declared virtual, resulting in invoking the
subclass implementation even when using a super-class pointer.

1 // anySystem can point to any system ,

2 System * anySystem = new SpecificSystem ();

3 //and still get an element from the correct subclass

4 double f_02 = anySystem ->f_elem (0,2);

Listing 4.3: Continuing listing 4.2 extracting the same element, f02, now through the raw
storage matrix for f . This example assumes two occupied (hole) states, thus making index
2 the first (0) particle state. With symmetric interaction matrices we expect fph = fThp.

5 mat const * f_hp;

6 //Get element from raw storage matrix.

7 f_hp = trans(anySystem ->get_f_ph ());

8 f_02 = (*f_ph)(0,0);

are hole states this belongs to ‘f hh’ and if both are particle states the element is found
in ‘f pp’. When there are one particle state and one hole state the ‘f ph’ matrix is used,
and, since the interaction is Hermitian, we can obtain ‘f hp’ as the transposed matrix.

Another way of accessing the same element as in listing 4.2 is to use the storage
matrices directly. The storage matrices for one-particle elements are extracted by calling
‘get f hh()’, ‘get f ph()’ or ‘get f pp()’. As an example, we recall ‘SpecificSystem1’ having
nh = 2 and np = 10. If one would like to extract f02 one must note that 2 is the first
particle-state, and 0 is the first hole-state. Indexing starts at zero, and because f is
symmetric we see how this can be found in the ‘f ph’ part,

f02 = f20 = fph00 , (4.19)

as implemented in listing 4.3.

Although the implementation in listing 4.1 is very simple, counting only 26 lines of code,
this would work perfectly for small systems. For larger systems one would encounter two
problems. Invoking ‘fillMatrixElements()’ will force calculation of all elements every time
a ‘SpecificSystem1’ is constructed, a problem discussed later in section 4.2.2. The other
problem is that the dimensionality of the two-particle interactions scales as the number
of virtual states to the fourth power. Using symmetries of the interactions one can reduce
the total number of two-body matrix elements. However, for larger numbers of single-
particle states, the dimensionalities become large and one needs better recipes to handle
the increase in dimensionality.

4.2.1 Symmetries in the Hamiltonian

Two-particle matrix elements 〈pq||rs〉 can be interpreted as the probability for two par-
ticles making a transition from states r and s into p and q. If our Hamiltonian preserves

4.2. IMPLEMENTATION 41

some quantum numbers, this transition is not possible, and thus zero, whenever the single-
particle states pq do not preserve the numbers from rs. In the case of quantum dots, we
encounter a two-body interaction that is spherically symmetric but not spin dependent.
This results in preserving both the angular-momentum quantum number m(≡ ml) as well
as spin ms. Defining M = mp + mq,M ′ = mr + ms and Ms = mp

s + mq
s,M

′
s = mr

s + ms
s,

the following holds true,

〈npmpmp
s;n

qmqmq
s||nrmrmr

s;n
smsms

s〉 = 0 if M 6= M ′ or Ms 6= M ′
s. (4.20)

More generally we define a mapping (p, q) ↔ (λ, π) where λ is a transition channel,
consisting of a specific set of preserved quantum numbers, and a configuration π for each
possible combination of (p, q) within that channel, such that

〈λπ||λ′π′〉 = 0 if λ 6= λ′. (4.21)

This re-indexing allows us to store the interaction elements as a block-diagonal matrix,
one block for each channel λ, stored as a matrix 〈π||π′〉λ. We further split the interaction
matrices whether their indices are above (a, b, c, d) or below (i, j, k, l) the Fermi-level,
resulting in six matrices,

〈ij||kl〉
〈aj||kl〉 = −〈ja||kl〉 = 〈kl||aj〉 = −〈kl||ja〉
〈ab||kl〉 = 〈kl||ab〉
〈aj||cl〉 = −〈aj||lc〉 = 〈ja||lc〉 = −〈ja||cl〉
〈ab||cl〉 = −〈ab||lc〉 = 〈cl||ab〉 = 〈lc||ab〉
〈ab||cd〉.

(4.22)

Splitting configurations into configurations for hole-hole states, particle-hole states and
particle-particle states, yielding the mappings

(i, j)↔ (λ, µ),

(a, j)↔ (λ, ν),

(a, b)↔ (λ, ξ),

(4.23)

we can use a storage scheme in ‘System’ objects splitting interactions into six parts sim-
ilarly to eq. (4.22), exploiting the sparseness to store block-diagonal parts of the six
matrices only,

〈µ||µ′〉λ, 〈ν||µ〉λ,
〈ξ||µ〉λ, 〈ν||ν〉λ,
〈ξ||ν〉λ, 〈ξ||ξ〉λ.

(4.24)

Mappings from states into channels and configurations are managed by the ‘Basis’
class, and one could access these mappings through the eight methods in listing 4.4. In
this context two general states are encoded to one index, I, i.e.

I(pq) = p+ q · (nh + np)

I(lm) = l +m · nh
I(dl) = d+ l · np
I(de) = d+ e · np,

(4.25)

42 CHAPTER 4. SYSTEMS

Listing 4.4: There are eight different mappings possible to access through the basis object.

1 // Mappings from (pq,lm,dl ,de) into lmd and (pi,mu ,nu ,xi)

2 get_map_lmdPI_pq ();

3 get_map_lmdMU_lm ();

4 get_map_lmdNU_dl ();

5 get_map_lmdXI_de ();

6

7 // Reverse mappings

8 get_map_pq_lmdPI ();

9 get_map_lm_lmdMU ();

10 get_map_dl_lmdNU ();

11 get_map_de_lmdXI ();

where nh is the number of hole-states, and np the number of particle-states. Returning
to our example of ‘SpecificSystem1’ we have nh = 2, np = 10, and trying to access the
matrix element 〈20||20〉 we can use either the procedure from listing 4.5, extracting the
raw matrices, or use the ‘v elem’ method as in listing 4.6.

The default ‘Basis’ base class assumes only one transition channel, resulting in storing
all interaction elements. For quantum dots we have M,Ms ↔ λ, implemented in ‘HOBa-
sis’. As an example of the reduced dimensionality, we consider a harmonic oscillator basis
with 20 electrons and 400 virtual states. The largest matrix would be 〈ab||de〉 with a
dimensionality of 4004, resulting in ∼ 200GB of storage! Exploiting the symmetries and
employing an ‘HOBasis’ instead reduces this to ∼ 1.75GB. Readers are encouraged to
read through this implementation, found in Ref. [6], as an example of subclassing ‘Basis’.

4.2.2 Reading elements from file

Another time-consuming part is to calculate the matrix elements, which could be per-
formed once and later read from file. To create a system read from file, it is convenient to
create a subclass of ‘TPfile’, and we take the actual implementation for circular quantum-
dots ‘CQDot’ as an example. There are three methods, shown in listing 4.7, which must
be overloaded. The constructor takes three arguments; the number of filled shells, the
total number of shells and the frequency, ω.

Looking at the constructor’s implementation, listing 4.8, we remark how ‘fillMatrix-
Elements’ is no longer called to fill both one- and two-particle elements. Instead we read
elements 〈pq||rs〉 from file using ‘readFileName’, and later calculate fpq by invoking ’fillF-
matrix’. Both these methods are public, and can therefore be invoked from the main
program. We create a basis, ‘HOBasis’, store the frequency in a private variable, and
create a reverse statemap to be used later when reading a file. This reverse statemap
assigns a unique key (unsigned int), constructed from the three quantum numbers, to
each state, and it is later possible to get the single index for any state by constructing
the same key.

One-particle elements are still calculated through ‘f elem()’, implementing the single-
particle energies from eq. (4.14) combined with a normal-ordered part as in eq. (3.64),

4.2. IMPLEMENTATION 43

Listing 4.5: We try to access the element 〈20||20〉 by mapping the |20〉 particle-hole state
into a channel and a configuration, |ν〉λ.

1 // Create a specific system

2 SpecificSystem1 sys;

3

4 //Get informations about its basis

5 Basis const * basis = sys.get_basis ();

6 int nH = basis ->get_nH (); //hole -states

7 int nP = basis ->get_nP (); //particle -states

8

9 //(d,l) = (2,0) is a particle hole configuration.

10 int d = 2 - nH;

11 int l = 0;

12 int dl = d + l * nH;

13

14 //Map into a channel and a configuration.

15 umat const * map = basis ->get_map_dl_lmdNU ();

16 int lmd = (*map)(0,dl); // first row contains lambda values.

17 int nu = (*map)(1,dl); // second row contains configurations.

18

19 // Retrieve element;

20 vector <mat > const * phph = sys ->get_v_phph ();

21 double elem_20_20 = phph ->at(lmd)(nu ,nu);

Listing 4.6: Continuing listing 4.5, accessing the same element again, 〈ν||ν〉λ = 〈20||20〉,
now using the reverse mapping, |ν〉λ → |20〉.

22 //Map back to two states d,l

23 vector <uvec > const * mapback = basis ->get_map_lmdNU_dl ();

24 dl = mapback ->at(lmd)(nu);

25 d = dl % nP + nH;

26 l = dl / nP;

27

28 //this should return the same element

29 elem_20_20 = sys ->v_elem(d,l,d,l);

44 CHAPTER 4. SYSTEMS

Listing 4.7: The three most important parts a subclass of ‘TPfile’ would need. The actual
implementation of ‘CQDot’ includes some extra methods and private variables.

1 class CQDot : public TPfile

2 {

3 public:

4 //#1- Constructor

5 CQDot(int filledR , int shellsR , double omega = 1.0);

6

7 //#2- Calculation of one -particle element f_{pq}

8 virtual double f_elem(std:: size_t p, std:: size_t q) const

9 {

10 //Part arising from normal ordering

11 double u_pq = 0.0;

12 for (int i = 0; i < basis ->get_nH (); i++)

13 u_pq += v_elem(p, i, q, i);

14

15 //Part from h0

16 ivec3 p_NMMs = basis ->stateMap(p);

17 int n = pNMMs (0);

18 int m = pNMMs (1);

19 double h0 = omega * (2 * n + abs(m) + 1);

20

21 //h0 is diagonal

22 if (p == q)

23 return h0 + u_pq;

24 else

25 return u_pq;

26 }

27

28 protected:

29 //#3- A recipe on how to decode tp -element file.

30 virtual size_t interp_qNum(char* qNumbers) const;

31 };

4.2. IMPLEMENTATION 45

Listing 4.8: Constructor for CQDot.

1 CQDot::CQDot(int filledR , int totalR , double omega)

2 {

3 // Initialize basis and frequency

4 basis = new HOBasis(filledR , totalR);

5 this ->omega = omega;

6

7 // Creating reversed state map , needed when reading file

8 int ntot = basis ->get_nH () + basis ->get_nP ();

9 for (int state = 0; state < ntot; state ++)

10 {

11 // Extract quantum numbers n,m,m_s

12 ivec3 nmms = basis ->stateMap(state);

13 unsigned int n = nmms (0);

14 int m = nmms (1);

15 unsigned int ms = nmms (2);

16

17 //Each state has a unique key.

18 unsigned int key = n + (m + (ms + hMaxM) * maxM) *

maxM;

19 revMap[key] = state;

20 }

21 }

46 CHAPTER 4. SYSTEMS

Listing 4.9: How to read tp-elements for CQDot.

1 void CQDot:: readFileStream(std:: ifstream &file)

2 {

3 //First read file as done in super class.

4 TPfile :: readFileStream(file);

5 //Then scale by sqrt(omega)

6 size_t dimLMD = basis ->dim_lmd_2p ();

7 for (size_t lmd = 0; lmd < dimLMD; lmd++)

8 {

9 v_hhhh.at(lmd) = sqrt(omega) * v_hhhh.at(lmd);

10 v_phhh.at(lmd) = sqrt(omega) * v_phhh.at(lmd);

11 v_pphh.at(lmd) = sqrt(omega) * v_pphh.at(lmd);

12 v_phph.at(lmd) = sqrt(omega) * v_phph.at(lmd);

13 v_ppph.at(lmd) = sqrt(omega) * v_ppph.at(lmd);

14 v_pppp.at(lmd) = sqrt(omega) * v_pppp.at(lmd);

15 }

16 //Fill one -particle elements.

17 fillFmatrix ();

18 }

viz

fpq = δpq (1 + |m|+ 2n)ω +
∑
i

〈pi||qi〉. (4.26)

Depending on 〈pi||qi〉, one-particle elements are required to be filled after two-particle
elements are read from file, by invoking ‘fillFmatrix’.

Two-particle elements are read through the method ‘readFileName’, redirecting to
‘readFileStream’ in listing 4.9. The file-reading itself is already implemented in the base
class, and we expect elements on file to be for ω = 1, such that we need only to scale ω
after reading. Invoking ‘TPfile::readFileStream’ will force the base-class implementation
to be run even though these functions are declared as virtual. The last steps are to scale
elements2 by

√
ω and fill the single-particle elements.

In order to successfully read elements from file the base class needs some information
about the file structure, found through the sub-class implementation of ‘interp qNum’. A
basic file format is expected to be binary with the content,

p q r s <pq||rs> p’ q’ r’ s’ <p’q’||r’s’> ... ,

where p is a number of bytes, nb, needed to specify the state p, q is nb bytes necessary
to specify q, and so on until the element itself 〈pq||rs〉 stored as a ‘double’. The imple-
mentation for quantum dots may serve as an example. Here n,m and ms are coded as an
unsigned short, a short and a char. This is repeated for all four states an element consists

2Only standard interaction can be scaled by
√
ω, forcing us to create another file-reading routine

‘readEffFileStream’ (and ‘readEffFileName’) for effective interactions. See section 7.1.2.

4.3. OTHER SYSTEMS 47

of, followed by the element itself,

ushort (2B)︷︸︸︷
np

short (2B)︷︸︸︷
mp

char (1B)︷︸︸︷
mp
s︸ ︷︷ ︸

numBytes (5B)

nqmqmq
s︸ ︷︷ ︸

(5B)

nr mr mr
s︸ ︷︷ ︸

(5B)

ns ms ms
s︸ ︷︷ ︸

(5B)

〈pq||rs〉︸ ︷︷ ︸
double (8B)

. (4.27)

On most platforms this would require 5 bytes for each state, and 8 bytes for the element,
as noted in parentheses. In order to know how many bytes are expected to describe each
state, ‘interp qNum(NULL)’ is queried. Once those bytes are read from file they are sent
to the same method as a char array, and expected return is a single integer indexing the
correct state. For ‘CQDot’, implementation in listing 4.10, the char array is split into an
unsigned short, short and a char, and the correct state is found using the reverse state
map that was initialized in the constructor.

A complete file can be read from file in a simple way, as listing 4.11 shows, reading one
element at a time, adding a simple loop to read all elements in a file. The functionality to
read files is already implemented in the ‘TPfile’ class, as the two methods ‘readFileName’
and ‘readFileStream’.

4.3 Other systems

Other systems may equally well be implemented, and should be compatible with the
different solvers as long as they extend the ‘System’ and ‘Basis’ base classes properly.

As an example we have implemented a simple class, ‘Atoms’, outlined in listings 4.12
and 4.13, that includes the 8 lowest-lying s-states3 of atomic orbitals. The atomic or-
bitals used here are the solutions of the one-electron problem, as for the Hydrogen atom,
and therefore often referred to as Hydrogen-like orbitals. The single-particle energies in
Hydrogen are found to be [7]

En =
Z2

2n2
, (in atomic units), (4.28)

and the two-particle correlation elements are found by integrating the Coloumb energies
for the atomic orbitals, either via closed form expressions or computer algebra software,
or by numerical integration.

If we were to extend the Harmonic Oscillator basis to three dimension, we would have a
basis often used in nuclear physics. In that case, one would need one additional quantum
number for the orbitals, as well as quantum numbers describing different types of particles.
Although not done in this thesis, it should, in the author’s opinion, not be too complicated.
However, nuclear calculations often require a larger dimensionality, and further basis
considerations (such as angular momentum coupling scheme), see for example Hagen et
al. [22].

3Atomic orbitals are distinguished by their angular momentum quantum number l. If l = 0 the state
is said to be sharp, an ‘s-state’. Continuing, for l = 1, 2, 3, we have principle, diffuse and fundamental.

48 CHAPTER 4. SYSTEMS

Listing 4.10: Implementation of ‘interp qNum’ in ‘CQDot’.

1 size_t CQDot :: interp_qNum(char* qNumbers) const

2 {

3 // Quantum numbers n, m, m_s read from file.

4 unsigned short n;

5 short m;

6 char ms;

7

8 // Single indexed state

9 size_t state;

10

11 //The number of bytes for each state

12 if (qNumbers == NULL)

13 return sizeof (n) + sizeof (m) + sizeof (ms);

14

15 //Split qNumbers!

16 size_t siz_n = sizeof (n);

17 memcpy (&n, qNumbers , siz_n);

18 size_t siz_m = sizeof (m);

19 memcpy (&m, qNumbers + siz_n , siz_m);

20 size_t siz_ms = sizeof (ms);

21 memcpy (&ms, qNumbers + siz_n + siz_m , siz_ms);

22

23 // Encode spin

24 if (ms == -1)

25 ms = 1; //down

26 else if (ms == +1)

27 ms = 0; //up

28

29 // unique key for any state

30 unsigned int key = n + (m + (ms + hMaxM) * maxM) * maxM;

31 // revMap is a std::map filled in the constructor

32 const map <unsigned int , unsigned int >:: const_iterator

found = revMap.find(key);

33

34 if (found == revMap.end())

35 state = maxM; //A state outside the current basis

36 else

37 state = found ->second; //State found in current basis

38

39 return state;

40 }

4.3. OTHER SYSTEMS 49

Listing 4.11: How to read two-particle elements from file.

1 void TPfile :: readFileStream(std:: ifstream &file)

2 {

3 // Number of bytes to read for each state.

4 size_t qNumWidth = interp_qNum(NULL);

5 char * qNumP = new char[qNumWidth];

6 char * qNumQ = new char[qNumWidth];

7 char * qNumR = new char[qNumWidth];

8 char * qNumS = new char[qNumWidth];

9

10 // Allocate memory for tp-elements.

11 //

12

13 while (true)

14 {

15 //Read one ‘line’ from file

16 double element = 0;

17 file.read(qNumP , sizeof (char) * qNumWidth);

18 file.read(qNumQ , sizeof (char) * qNumWidth);

19 file.read(qNumR , sizeof (char) * qNumWidth);

20 file.read(qNumS , sizeof (char) * qNumWidth);

21 file.read((char*) &element , sizeof (double));

22 if (file.eof())

23 break; //End of file?

24

25 //Find the index

26 size_t p = interp_qNum(qNumP);

27 size_t q = interp_qNum(qNumQ);

28 size_t r = interp_qNum(qNumR);

29 size_t s = interp_qNum(qNumS);

30

31 //Store all antisymmetric possibilities

32 storePQRS(p, q, r, s, element);

33 storePQRS(p, q, s, r, -element);

34 storePQRS(q, p, s, r, element);

35 storePQRS(q, p, r, s, -element);

36 }

37

38 //Free the four char arrays

39 //

40 }

50 CHAPTER 4. SYSTEMS

Listing 4.12: Simple implementation for the first sharp atomic orbitals. Continued in
listing 4.13.

1 class Atoms : public System

2 {

3 public:

4 /** numElec is 2 for helium , 4 for beryllium */

5 Atoms(int numElec = 2)

6 {

7 // Charge from nucleus defaults to number of electrons

8 Z = numElec;

9 //There are only 8 states implemented

10 basis = new Basis(numElec , 8 - numElec);

11 //Fill matrices

12 fillMatrixElements ();

13 }

14

15 virtual double f_elem(std:: size_t p, std:: size_t q) const

16 {

17 //Normal -ordered part

18 double u_pq = 0;

19 for (int i = 0; i < basis ->get_nH (); i++)

20 u_pq += v_elem(p, i, q, i);

21 //single -particle energies

22 int n = p / 2 + 1; //n is the energy level

23 double h0 = -pow((double) Z, 2) / (2 * n * n);

24 //h0 is diagonal

25 if (p == q)

26 return h0 + u_pq;

27 else

28 return u_pq;

29 }

4.3. OTHER SYSTEMS 51

Listing 4.13: Continuation of listing 4.12.

30 virtual double v_elem(

31 std:: size_t p, std:: size_t q,

32 std:: size_t r, std:: size_t s) const

33 {

34 //Get spin of particles

35 bool pUP = p % 2 == 0;

36 //... same for q,r and s ...

37

38 //Map p,q,r,s to n quantum number

39 int n_p = p / 2 + 1;

40 //... same for q,r and s ...

41

42 //First term of element

43 double term1 = 0;

44 if (pUP == rUP && qUP == sUP)

45 term1 = spatial_integral(n_p , n_q , n_r , n_s);

46 // Second term

47 double term2 = 0;

48 if (pUP == sUP && qUP == rUP)

49 term2 = spatial_integral(n_p , n_q , n_s , n_r);

50

51 return term1 - term2;

52 }

53

54 /** The spatial integral of correlation energies can be

55 /* found analytically (and tabulated) using Mathematica

56 /* or Maple. Also possible to find through numerical

57 /* integration. (four lowest lying orbitals only) */

58 double spatial_integral(int n_p , int n_q , int n_r , int n_s)

const;

59

60 private:

61 /** The total charge in the nucleus */

62 double Z ;

63 };

Chapter 5

Coupled-cluster theory

The coupled-cluster method (CC) is an ab initio method for solving the quantum me-
chanical many-body problem. It was first introduced by Coester and Kümmel during the
1950s [23, 24], originally developed for problems in nuclear physics, but later reformulated
for systems of electrons by Čižek in 1966 [25]. It is one of the most popular post-Hartree-
Fock methods today. Not too computationally expensive, also gaining good accuracy as
well as possessing important features like size-consistency and size-extensivity.

Size-extensive, or just extensive, implies that the energy scales correctly with the
number of subunits. Adding more electrons the energy should still have an error scaling
proportional to the number of electrons. Size-consistency is best described by having two
independent systems. Coupled-cluster theory should then report the same result for one
calculation on both systems as for adding together the results from individual calculations
on the two systems. Although important, these features are not always well defined, and
a more precise discussion is conducted in [1].

5.1 The exponential ansatz

The foundation for most many-body methods is to express the correct wave function by
an expansion in a set of basis functions. One example is the Hartree-Fock (HF) method
which employs a unitary transformation of the single-particle wave functions,

|λ〉 =
∑
ψ

Cλψ|ψ〉, (5.1)

and approximates the ground state with a reference Slater determinant built up by these
transformed wave functions. Another example is configuration interaction (CI) where the
reference determinant is set to a linear expansion of determinants, including the initial
reference determinant, 1p-1h excitations, 2p-2h excitations and so on, i.e.

|ΨCI
0 〉 = C0|Φ0〉+

∑
ia

Ca
i |Φa

i 〉+
∑
ijab

Cab
ij |Φab

ij 〉+ · · · . (5.2)

In all these methods one needs to solve a set of coupled equations to find the coefficients.
Note that the summation over the single-particles states runs over hole states ijk . . . and
unoccupied single-particle states abc The latter summation runs over an infinite basis
of single-particle states. This sum is truncated in all practical applications.

53

54 CHAPTER 5. COUPLED-CLUSTER THEORY

The coupled-cluster method also expands the exact solution in a set of Slater determi-
nants, but employs a non-linear expansion through the exponential ansatz,

|ΨCC
0 〉 = eT̂ |Φ0〉, (5.3)

where T̂ is the cluster operator including all possible excitations on the reference deter-
minant. Sorting excitations by the number of excited electrons, we may generally express
this general cluster operator as a sum of a 1p-1h operator, a 2p-2h operator, and so on,

T̂ = T̂1 + T̂2 + T̂3 + · · · . (5.4)

In the form of second-quantized operators the 1p-1h cluster operator is defined as

T̂1 =
∑
ia

tai â
†î, (5.5)

the 2p-2h cluster operator as

T̂2 =
1

4

∑
ijab

tabij â
†b̂†ĵ î, (5.6)

continuing up to

T̂n =

(
1

n!

)2 ∑
ij···ab···

tab···ij··· â
†b̂† · · · ĵ î. (5.7)

As long as we have a complete single-particle basis and include all possible excitations
up to np-nh in a system with n particles, we should find the exact solution for both CI,
|ΨCI

0 〉, and CC, |ΨCC
0 〉.

It is of course not doable to find the exact solution in practice. A complete single-particle
basis would typically mean an infinite set of basis functions. In addition we would need
all excitations up to np-nh determinants, yielding a huge amount of determinants. This is
why all methods need a computational cut-off. Two types of truncations are used. First
we truncate the number of single-particle basis functions, throwing away the ones with
the highest energies, which makes sense since our interest is in the ground-state energy.
Second we truncate the number of excitations we include, giving rise to different types
of coupled-cluster methods. Including the singly excited cluster operator the method is
labeled by S, for ‘single’, and including the doubly excited cluster operator the label D
is added, for ‘double’. This thesis has an emphasis on CCSD – ‘Coupled Cluster Singles
and Doubles’.

5.2 Derivation of the CCSD-equations

In the rest of this chapter we will derive the CCSD equations using the diagrammatic
approach discussed earlier. This allows for a compact and efficient way of representing
complicated equations, adding also simple physical interpretations of various processes.

5.2. DERIVATION OF THE CCSD-EQUATIONS 55

We aim to find the solution to the time-independent energy eigenvalue equation,

Ĥ|Ψ0〉 = E0|Ψ0〉 ∼= ĤeT̂ |Φ0〉 = E0e
T̂ |Φ0〉, (5.8)

assuming |Ψ0〉 can be approximated by the exponential ansatz (5.3). In principle exact,
if we can sum over all possible single-particle states, we get an approximation in (5.8)
whenever the single-particle basis or the number of excitations included are truncated. It
is useful to project 〈Φ0|e−T̂ onto the eigenvalue equation to get an explicit expression for
the energy,

〈Φ0|e−T̂ ĤeT̂ |Φ0〉 = 〈Φ0|e−T̂E0e
T̂ |Φ0〉 = E0. (5.9)

We may also project an excited determinant, 〈Φexc.|e−T̂ , onto the equation. Assuming or-
thonormal basis functions, and exploiting the fact that excited states should be orthogonal
to the reference determinant, we get

〈Φexc.|e−T̂ ĤeT̂ |Φ0〉 = 〈Φexc.|e−T̂E0e
T̂ |Φ0〉 = E0〈Φexc.|1̂|Φ0〉 = 0. (5.10)

Further simplifications are found if we use the normal-ordered Hamiltonian, (3.63), leading
to

〈Φ0|e−T̂ ĤNe
T̂ |Φ0〉 =〈Φ0|e−T̂ ĤeT̂ |Φ0〉 − Eref = E0 − Eref

〈Φexc.|e−T̂ ĤNe
T̂ |Φ0〉 =〈Φexc.|e−T̂ (E0 − Eref)eT̂ |Φ0〉 = 0.

(5.11)

The reference energy Eref is here the energy of the reference Slater determinant, as defined
in eq. (3.62), not the same as the exact (within the selected truncation) ground-state
energy, E0.

In the following derivation i, j, k and a, b, c will refer to indices in the outgoing state,
or simply bra state hereafter for short, whereas d, e, ... and l,m, ... are free indices to be
summed over, still restricting a, b, c, d, e, ... to be particle states and i, j, k, l,m, ... to be
hole states. We define the similarity transformed Hamiltonian, denoted H̄, which can be
evaluated as a series of commutators using the Baker-Campbell-Hausdorff formula [26],

H̄ ≡ e−T̂ ĤNe
T̂ = ĤN+

[
ĤN , T̂

]
+

1

2!

[[
ĤN , T̂

]
, T̂
]
+

1

3!

[[[
ĤN , T̂

]
, T̂
]
, T̂
]
+· · · . (5.12)

There are three equations that, in the case of singles and doubles, we need to solve,

〈Φ0|H̄|Φ0〉 = E0 − Eref
〈Φa

i |H̄|Φ0〉 = 0

〈Φab
ij |H̄|Φ0〉 = 0.

(5.13)

The first gives us an explicit form for the energy, whereas the other two will determine
the amplitudes in the cluster operators.

Let Â and B̂ be two normal-ordered strings of operators containing an even number of
creation and annihilation operators. Using Wick’s generalized theorem, their commutator
would be [

Â, B̂
]

=
{
ÂB̂
}
−
{
B̂Â
}

+

{
ÂB̂

}
−

{
B̂Â

}
, (5.14)

56 CHAPTER 5. COUPLED-CLUSTER THEORY

where the two uncontracted terms are the same, and we thus end up with

[
Â, B̂

]
=

{
ÂB̂

}
−

{
B̂Â

}
. (5.15)

We observe that the cluster operators are already normal-ordered, and also note how no
contractions between a cluster operator on the left and any other operator on the right can
be non-zero. This is because the T̂ operator contains â†b̂† · · · ĵ î, none of which can lead
to any non-zero contraction from (3.44). The cluster operators thus commute, yielding

[
T̂n, T̂m

]
=

{
T̂nT̂m

}
−

{
T̂mT̂n

}
= 0. (5.16)

We may also explore how the cluster operators commute with the Hamiltonian. Once
again terms with T̂n on the left side are zero, and we are left with

[
ĤN , T̂n

]
=

{
ĤN T̂n

}
−

{
T̂nĤN

}
=

{
ĤN T̂n

}
. (5.17)

Applying this recursively to write out (5.12) it becomes clear that all surviving terms have
ĤN to the left, and all the cluster operators should have at least one contraction each
to the Hamiltonian. These terms are referred to as connected terms (subscript C), and
because the electronic Hamiltonian includes no more than four operators it would not be
possible to find connected terms with more than four cluster operators, posing a natural
truncation to H̄,

H̄ =
(
ĤNe

T̂
)
C

= ĤN +
(
ĤN T̂

)
C

+
1

2

(
ĤN T̂

2
)
C

+
1

3!

(
ĤN T̂

3
)
C

+
1

4!

(
ĤN T̂

4
)
C
. (5.18)

5.2.1 Diagrammatic rules

It is now possible to write out all possible terms and evaluate them diagrammatically.
Writing out each term as a diagram, a number of rules exist on how to interpret them
and how to find the correct algebraic expressions:

1. Sum over all free indices. Free indices are not connected to the bra determinant.

2. Interpret one-body operators as 〈out|f̂ |in〉 ≡ fout,in, and two-body operators as
〈lout, rout||lin, rin〉.

3. Add a phase factor of (−1)l+h, where l is the number of loops and h is the number
of hole lines.

4. Multiply by a factor of 1
2

for each pair of equivalent lines. Equivalent lines are
starting and ending at the same interaction lines.

5. Each pair of equivalent vertices results in an additional factor of 1
2
. Equivalent

vertices are vertices of equal type connected to the same interaction lines with
equivalent connecting lines.

5.2. DERIVATION OF THE CCSD-EQUATIONS 57

6. Each external, unique pair of holes or particles not connected to the same interaction
line leads to an antisymmetric permutation P̂l1l2 .

7. If there are multiple ways to connect the diagrams, only one term should exist for
each configuration in the Sign-Table technique discussed below.

The different rules will be discussed in more detail where needed.

It is possible to split up the sums in the interactions, specifying whether the indices are
within the Fermi level or not. For the one-body part there are four possibilities,

F̂N =
∑
de

fde

{
d̂†ê
}

+
∑
lm

flm

{
l̂†m̂
}

+
∑
ld

fld

{
l̂†d̂
}

+
∑
dl

fdl

{
d̂†l̂
}
, (5.19)

diagrammatically represented as,

F̂N = � + � +

�
+

�
. (5.20)

The first two terms have the same amount of lines at the top as in the bottom, and we say
that these terms have an excitation level zero. Such terms have no possibility to neither
create nor annihilate a particle-hole pair. If there is an incoming 2p-2h excitation in a
diagram, there will also be an outgoing 2p-2h excitation. The third term is said to have
excitation level minus one. When connected in a diagram it will destroy one particle-
hole pair, transforming for example an incoming 2p-2h excitation into an outgoing 1p-1h
excitation. Following this reasoning, the last term has excitation level plus one.

Splitting the two-body operator similarly we get

V̂N = � + � + �
+ � + �
+ � + �
+

�
+

�
.

(5.21)

The excitation levels are 0 for the first line, −1 for the second, +1 for the third, and the
last two terms have +2 and −2 respectively.

58 CHAPTER 5. COUPLED-CLUSTER THEORY

Cluster operators are represented with a solid horizontal line for the amplitude as well
as electron-lines for the creation and annihilation operators, i.e.

T̂1 =
∑
dl

tdl d̂
†l̂ =�l d

T̂2 =
∑
delm

tdelmd̂
†ê†m̂l̂ =�l md e .

(5.22)

An n-body cluster operator creates an np-nh excitation, and has thus an excitation
level +n.

5.2.2 The energy equations

The coupled-cluster energy ∆ECCSD = E0 − Eref is defined as

〈Φ0|H̄|Φ0〉 = ∆ECCSD. (5.23)

There are only three terms from H̄ that contribute to the energy equations [1],

H̄ →
(
F̂N T̂1 + V̂N T̂2 +

1

2
V̂N T̂

2
1

)
C

, (5.24)

and we sort the terms whether they are connected to F̂N or V̂N .

Contributions from F̂N:

We will first try to find all terms in eq. (5.24) with cluster operators connected to F̂N . No
lines can be left unconnected, since both the bra (outgoing) state and the ket (incoming)
state are reference states. Only the third term in F̂N can obey this, having no lines
pointing upwards and an excitation level of −1. To end up with an excitation level of 0
we need to connect it with T1 which has a +1 excitation level. Since no electron lines are
connected to the bra, they are summed freely over, labelling the particle d, and the hole
l (rule 1). We have one loop, and one hole line leading to a phase factor (−1)1+1 = +1
(rule 3). The interaction has an incoming particle line d, and an outgoing hole line l,
resulting in fout,in → fld (rule 2). Setting the correct indices for the amplitude as well,
this term yields

F̂N T̂1 → � = +
∑
ld

fldt
d
l , (5.25)

and is the only contribution from F̂N .

5.2. DERIVATION OF THE CCSD-EQUATIONS 59

Contributions from V̂N:

We need to use the last term in V̂N since all the other terms would leave uncontracted
lines pointing upwards, defying the concept of a reference bra state. Having an excitation
level of −2 we need to connect it to amplitudes with a +2 excitation level. There are only
two possible ways to do this; V̂N T̂2 and V̂N T̂

2
1 . The first contribution is

V̂N T̂2 → � = +
1

4

∑
lmde

〈lm||de〉tdelm, (5.26)

resulting in a term with two hole lines as well as two loops and thus a positive phase. All
indices are freely summed, but since both the pair of particle lines and the pair of hole
lines start and stop at the same interaction, they are equivalent, and should be multiplied

by
(

1
2

)2
= 1

4
(rule 4).

The last term in the energy has also two hole lines and two loops, but, since there
are two T̂1 operators, the particle and hole lines are no longer equivalent. These are two
equivalent vertices instead, raising a factor 1

2
(rule 5) and resulting in

1

2
V̂N T̂

2
1 → � = +

1

2

∑
lmde

〈lm||de〉tdl tem. (5.27)

Adding these terms together we end up with the complete energy equation

∆ECCSD =
∑
ld

fldt
d
l +

1

4

∑
lmde

〈lm||de〉tdelm +
1

2

∑
lmde

〈lm||de〉tdl tem, (5.28)

giving us the correction to the energy as compared to Eref for a given set of amplitudes
tai and tabij .

5.2.3 The T̂1 equations

The amplitudes are determined by the amplitude equations. We start with the T̂1 equa-
tions derived from

〈Φa
i |H̄|Φ0〉 = 0. (5.29)

Because of the singly excited bra determinant we will need a total excitation level of +1.
The contributing parts from H̄ are [1],

H̄ →
[
ĤN + ĤN

(
T̂1 + T̂2

)
+ ĤN

(
1

2
T̂ 2

1 + T̂1T̂2

)
+ ĤN

1

3!
T̂ 3

1

]
C

, (5.30)

here presented in the same order as we will follow.

60 CHAPTER 5. COUPLED-CLUSTER THEORY

Contributions from ĤN:

With a reference ket at the bottom and expecting a singly excited determinant bra at the
top, we need a term with excitation level +1 and no electron lines pointing downwards.
There is only one appropriate term for this,

F̂N → � = +fai. (5.31)

Both electron lines are connected to the singly excited bra state, labeled i, a, and thus
not summed freely over. With one hole line and one loop (particle-hole excitations are
‘connected’ in the bra determinant) the factor in front is +1.

Contributions from ĤNT̂:

Connecting terms from ĤN , first with the T̂1 cluster operators, the total excitation level
needs to be +1, already supplied by the singly excited cluster operator. We then require
interaction terms that neither create nor destroy particle-hole excitations. Three possible
interaction terms fit in: two from F̂N ,

F̂N T̂1 → � + � = +
∑
d

fadt
d
i −

∑
l

flit
a
l , (5.32)

and one from V̂N ,

V̂N T̂1 → � = +
∑
ld

〈la||di〉tdl . (5.33)

There are also three terms where the interactions are connected to T̂2, requiring the inter-
actions to have the ability to annihilate one particle-hole excitation. One term connects
to F̂N ,

F̂N T̂2 → � = +
∑
ld

fldt
ad
il , (5.34)

and the other two to V̂N ,

V̂N T̂2 →� + �
= +

1

2

∑
lde

〈al||de〉tdeil −
1

2

∑
lmd

〈lm||di〉tdalm.

(5.35)

5.2. DERIVATION OF THE CCSD-EQUATIONS 61

Contributions from ĤNT̂2:

The cluster operator to second order has three terms,

1

2
ĤN

(
T̂1 + T̂2

)2

→ 1

2
ĤN T̂

2
1 + ĤN T̂1T̂2 +

1

2
ĤN T̂

2
2 , (5.36)

and we may first note how no contraction between T̂ 2
2 and any interaction term can be

made without resulting in at least a doubly excited bra state. This leaves us with T̂ 2
1

and the cross term T̂1T̂2. For T̂ 2
1 we can connect the same interaction terms as for T̂2 in

eqs. (5.34) and (5.35),

1

2
F̂N T̂

2
1 → � = −

∑
ld

fldt
d
i t
a
l , (5.37)

and

1

2
V̂N T̂

2
1 →� + �

= +
∑
lde

〈al||de〉tdi tel −
∑
lmd

〈lm||di〉tdl tam.

(5.38)

For the cross term, T̂1T̂2, we need an operator with excitation level −2. Only the last V̂N
term has this level, but it can be connected in three distinct ways,

V̂N T̂1T̂2 →� +� +�
=

1

2

∑
lmde

〈lm||de〉tdi tealm +
1

2

∑
lmde

〈lm||de〉tamtdeil +
∑
lmde

〈lm||de〉temtadil .

(5.39)

In order to find all unique ways of connecting the operators together, the sign-table tech-
nique is applied (rule 7). Denoting a plus sign for all particle lines in the interaction
that are connectable to amplitudes (below the interaction line), and a minus sign for all
connectable hole lines, we set up a table for which lines are connected to which ampli-
tude. The term from V̂N used in eq. (5.39) has two particle and two hole lines below the
interaction line, represented by a string of four signs, + + −−. A sign table consists of
one column for each of the cluster operators, and distinct terms exist for each unique way
the signs are distributed. The three distinct terms from equation (5.39) are represented
in table 5.1 in the same order as the terms appear in the equation. Adding more than one
+ or more than one − to T̂1 would be impossible here, due to its one-particle one-hole
nature, and leaving T̂1 empty would lead to an uncontracted term. For this reason we get
only the three terms seen.

62 CHAPTER 5. COUPLED-CLUSTER THEORY

Table 5.1: Sign table for the three terms in eq. (5.39).

T̂1 T̂2

+ +−−
− + +−

+− +−

Contributions from ĤNT̂3:

No term in the normal-ordered Hamiltonian can annihilate more than a 2p-2h excitation,
and since the bra determinant is singly excited (a 1p-1h excitation), at most a triple
excitation can arise from the cluster operators. The last possible term is thus connected
to T̂ 3

1 ,

1

3!
V̂N T̂

3
1 →� = +

∑
lmde

〈lm||de〉tdi tel tam. (5.40)

Adding all terms together we get the complete T̂1 amplitude equations;

0 =fai +
∑
d

fadt
d
i −

∑
l

flit
a
l +

∑
ld

〈la||di〉tdl

+
∑
ld

fldt
ad
il +

1

2

∑
lde

〈al||de〉tdeil −
1

2

∑
lmd

〈lm||di〉tdalm −
∑
ld

fldt
d
i t
a
l

+
∑
lde

〈al||de〉tdi tel −
∑
lmd

〈lm||di〉tdl tam +
1

2

∑
lmde

〈lm||de〉tdi tealm

+
1

2

∑
lmde

〈lm||de〉tamtdeil +
∑
lmde

〈lm||de〉temtadil +
∑
lmde

〈lm||de〉tdi tel tam.

(5.41)

5.2.4 The T̂2 equations

We continue by finding algebraic expressions for the T̂2 equations,

〈Φab
ij |H̄|Φ0〉 = 0, (5.42)

and utilize the same techniques as before. We need also to introduce permutations of
external lines in eq (5.45) in order to obtain a final anti-symmetrized contribution when
the final lines do not arise or enter the interaction vertex or amplitude. Requiring a doubly
excited particle-hole pair to accommodate the bra determinant, the possible contributions
are [1],

H̄ →
[
ĤN + ĤN

(
T̂1 + T̂2

)
+ ĤN

(
1

2
T̂ 2

1 + T̂1T̂2 +
1

2
T̂ 2

2

)
+ĤN

(
1

3!
T̂ 3

1 +
1

2
T̂ 2

1 T̂2

)
+ ĤN

1

4!
T̂ 4

1

]
C

(5.43)

5.2. DERIVATION OF THE CCSD-EQUATIONS 63

Contributions from ĤN:

The only interaction term to have a double particle-hole excitation comes from V̂N ,

V̂N → � = 〈ab||ij〉. (5.44)

Contributions from ĤNT̂:

A consequence of having more than one pair of external particle and hole lines from the
bra determinant is that two different particle-, or hole-lines may be connected to different
operators. In the following two terms we have labeled the external lines from left to right,
i, a, j, b,

V̂N T̂1 →� + �
=P̂ij

∑
d

〈ab||dj〉tdi − P̂ab
∑
l

〈al||ij〉tbl .

(5.45)

The first term has i connected to T̂1, whereas j is connected to V̂N , and the second
term has a connected to V̂N , whereas b is connected to T̂1. Whenever two such lines are
connected to the same interaction a permutation is implied through the antisymmetric
nature of the elements, i.e.

〈pq||rs〉 = −〈pq||sr〉 = · · · or tabij = −tabji = · · · . (5.46)

In the cases where such a permutation is not implied, we need to enforce a permutation,
as in equation (5.45).

No permutations arose in the T̂1 equations due to the fact that only one particle and
one hole line were connected upwards to the singly excited determinant. Now, in the T̂2

equations, we have a doubly excited determinant, with the consequence of more terms
requiring permutations, as seen also in the terms from ĤN T̂2:

F̂N T̂2 →� +�
= P̂ab

∑
d

fbdt
ad
ij − P̂ij

∑
l

flit
ab
lj ,

(5.47)

64 CHAPTER 5. COUPLED-CLUSTER THEORY

Table 5.2: Sign tables for the four terms of eq. (5.50), and the two from eq. (5.51).

(a) (5.50).

T̂2 T̂2

+− +−
+ +−−
− + +−

++ −−

(b) (5.51)

T̂1 T̂2

+ −
− +

and

V̂N T̂2 →� +� +�
=

1

2

∑
de

〈ab||de〉tdeij +
1

2

∑
lm

〈lm||ij〉tablm + P̂ijP̂ab
∑
ld

〈lb||dj〉tadil .

(5.48)

Contributions from ĤNT̂2:

For ĤN T̂
2
1 three terms meet the requirements of corresponding excitation levels,

1

2
V̂N T̂

2
1 →� +� +�
=P̂ij

1

2

∑
de

〈ab||de〉tdi tej + P̂ab
1

2

∑
lm

〈lm||ij〉tal tbm − P̂ijP̂ab
∑
ld

〈al||dj〉tdi tbl .

(5.49)

With an equivalent pair of particle lines, an equivalent pair of hole lines, and no equivalent
lines, respectively, we need to account for the factors of 1

2
, 1

2
and 1, respectively.

Only one term from the interaction is possible to match with T̂ 2
2 , due to the need

for a doubly de-excitated interaction operator. Although only one term fits, it can be

5.2. DERIVATION OF THE CCSD-EQUATIONS 65

Table 5.3: Sign tables for eq. (5.52)

T̂1 T̂2

+ +−
− ++

+− +

T̂1 T̂2

+ −−
− +−

+− −

connected in four different ways, found by the sign table of table 5.2(a),

1

2
V̂N T̂

2
2 →� +�

+� +�
=P̂ijP̂ab

1

2

∑
lmde

〈lm||de〉tadil tebmj + P̂ab
1

2

∑
lmde

〈lm||de〉tadij teblm

+P̂ij
1

2

∑
lmde

〈lm||de〉tdeil tabmj +
1

4

∑
lmde

〈lm||de〉tdeij tablm.

(5.50)

One may note how the two T̂2 operators are counted as equivalent, omitting thereby
configurations that already exist if we were to switch place between the two operators,
i.e. + + | − − is the same as −− |+ +, thus counted only once.

The cross term T̂1T̂2 from T̂ 2 demands for a singly de-excited interaction operator,
found in both F̂N and V̂N . For the one-particle interaction we have two possible configu-
rations,

F̂N T̂1T̂2 →� +�
=− P̂ab

∑
ld

fldt
ad
ij t

b
l − P̂ij

∑
ld

fldt
d
i t
ab
lj ,

(5.51)

as seen from table 5.2(b). When it comes to the part connected to V̂N , there are two
interactions to use, one having two particle lines and one hole line connectable with the
cluster operators, another having two hole lines and one particle line to be connected with
the cluster operators. In table 5.3, this provides the two combinations + +− and −−+,

66 CHAPTER 5. COUPLED-CLUSTER THEORY

Table 5.4: Sign table for eq. (5.54).

T̂1 T̂1 T̂2

+ + −−
− − ++
+ − +−

+− − +
+− + −

in all responsible for six unique configurations,

V̂N T̂1T̂2 →� +� +�
+� +� +�

= P̂ijP̂ab
∑
lde

〈al||de〉tdi teblj − P̂ab
1

2

∑
lde

〈al||de〉tdeij tbl + P̂ab
∑
lde

〈bl||de〉tadij tel

+P̂ij
1

2

∑
lmd

〈lm||dj〉tdi tablm − P̂ijP̂ab
∑
lmd

〈lm||dj〉tadil tbm − P̂ij
∑
lmd

〈ml||di〉tdmtablj .

(5.52)

Contributions from ĤNT̂3:

In the case of the T̂2 equations, terms with higher order of cluster operators come forth,
as evident for T̂ 3. As high as quadruple excitations can arise in the cluster operators
and still be contracted with V̂N to create a doubly excited determinant. Two terms from
the two-particle interaction can ensure the correct excitation levels, and at the same time
contributes with one contraction to each of the operators in T̂ 3

1 ,

1

3!
V̂N T̂

3
1 →� +�

= −P̂ijP̂ab
1

2

∑
lde

〈al||de〉tdi tejtbl+P̂ijP̂ab
1

2

∑
lmd

〈lm||dj〉tdi tal tbm.

(5.53)

The most complicated sign table to be encountered is for the terms contracting V̂N
with T̂ 2

1 T̂2. Five terms are found,

5.3. IMPLEMENTING CCSD 67

1

2
V̂N T̂

2
1 T̂2 →� +� +�

+� +�
= P̂ij

1

4

∑
lmde

〈lm||de〉tdi tejtablm + P̂ab
1

4

∑
lmde

〈lm||de〉tal tbmtdeij + P̂ijP̂ab
∑
lmde

〈lm||de〉tdi tbmtaelj

−P̂ab
∑
lmde

〈lm||de〉temtbl tadij − P̂ij
∑
lmde

〈lm||de〉tdl tei tabmj,

(5.54)

one for each of the configurations in table 5.4.

Contributions from ĤNT̂4:

The last term includes four cluster operators, all of which need to be a T̂1 operator to
satisfy the needed excitation level. In order to be a connected diagram, all four cluster
operators should be attached with at least one contraction each to V̂N . This is achieved
in only one way due to the interaction containing exactly four operators,

1

4!
V̂N T̂

4
1 →� = P̂abP̂ij

1

4

∑
lmde

〈lm||de〉tdi tal tejtbm. (5.55)

5.3 Implementing CCSD

We revisit the T̂1 equations, (5.41). It is possible to relabel free indices, as long as they still
sum over the same region, either hole states or particle states. Doing such a re-indexing,
and at the same time factor out similar terms, we get

0 =fai +
∑
ld

〈la||di〉tdl +
1

2

∑
lde

〈al||de〉tdeil +
∑
d

[
fad +

∑
le

〈al||de〉tel

]
tdi

−
∑
l

[
fli +

∑
d

fldt
d
i +

∑
md

〈ml||di〉tdm +
∑
mde

〈lm||de〉tdi tem +
1

2

∑
mde

〈lm||de〉tdeim

]
tal

+
1

2

∑
lmd

[
〈lm||id〉+

∑
e

〈lm||ed〉tei

]
tdalm +

∑
ld

[∑
me

〈lm||de〉tem + fld

]
tadil .

(5.56)

The parentheses can be defined as intermediates to be calculated and stored before we
solve the complete equations. The first four parentheses define what we will label the
intermediates from one to four;

[I1]ad = fad +
∑
le

〈al||de〉tel , (5.57)

68 CHAPTER 5. COUPLED-CLUSTER THEORY

[I2]ld = fld +
∑
me

〈lm||de〉tem, (5.58)

[I3]li = fli +
∑
md

〈ml||di〉tdm +
1

2

∑
mde

〈lm||de〉tdeim +
∑
d

[I2]ld t
d
i , (5.59)

[I4]lmid = 〈lm||id〉+
∑
e

〈lm||ed〉tei

= [I5]lmid +
∑
e

1

2
〈lm||ed〉tei ,

(5.60)

where the last intermediate depends on

[I5]lmid = 〈lm||id〉+
∑
e

1

2
〈lm||ed〉tei . (5.61)

Applying such a simplification the T̂1 amplitude equations reduce to

0 =fai +
∑
ld

〈la||di〉tdl +
1

2

∑
lde

〈al||de〉tdeil +
∑
d

[I1]ad t
d
i

−
∑
l

[I3]li t
a
l +

1

2

∑
lmd

[I4]lmid t
da
lm +

∑
ld

[I2]ld t
ad
il .

(5.62)

We continue, repeating this procedure of simplification, with the T̂2 equations, rela-
belling indices and factoring out common terms,

0 =〈ab||ij〉+
1

2
〈ab||de〉tdeij

− P̂ij
[
fli + fldt

d
i + 〈ml||di〉tdm + 〈ml||de〉tdmtei +

1

2
〈ml||de〉tdemi

]
tablj

+
1

2

[
〈lm||ij〉+ P̂ij〈lm||dj〉tdi +

1

2
〈lm||de〉tdeij + P̂ij

1

2
〈lm||de〉tdi tej

]
tablm

+ P̂ab

[
fbd − fldtbl + 〈bl||de〉tel − 〈lm||de〉temtbl +

1

2
〈lm||de〉teblm

]
tadij

+ P̂ijP̂ab

[
〈lb||dj〉 − 〈lm||dj〉tbm + 〈bl||ed〉tej − 〈lm||de〉tejtbm +

1

2
〈lm||de〉tebmj

]
tadil

− P̂ab
[
〈al||ij〉+

1

2
〈al||de〉tdeij + P̂ij〈al||dj〉tdi + P̂ij

1

2
〈al||de〉tdi tej

+
1

2
〈lm||ij〉tam +

1

4
〈lm||de〉tamtdeij + P̂ij

1

2
〈lm||dj〉tdi tam + P̂ij

1

4
〈lm||de〉tdi tejtam

]
tbl

+ P̂ij

[
〈ab||dj〉+

1

2
〈ab||de〉tej

]
tdi .

(5.63)

Once again we define intermediates, still having the five intermediates from T̂1 in memory.
The first parenthesis from T̂2 is already defined in [I3]li. The following three parentheses

5.3. IMPLEMENTING CCSD 69

are [I6],[I7] and [I8] respectively;

[I6]lmij =〈lm||ij〉+ P̂ij〈lm||dj〉tdi +
1

2
〈lm||de〉tdeij + P̂ij

1

2
〈lm||de〉tdi tej

=〈lm||ij〉+
1

2
〈lm||de〉tdeij − P̂ij

(
〈lm||jd〉tdi +

1

2
〈lm||ed〉tdi tej

)
=〈lm||ij〉+

1

2
〈lm||de〉tdeij − P̂ij [I5]lmjd t

d
i ,

(5.64)

[I7]bd =fbd − fldtbl + 〈bl||de〉tel − 〈lm||de〉temtbl +
1

2
〈lm||de〉teblm

= [I1]bd − [I2]ld t
b
l +

1

2
〈lm||de〉teblm,

(5.65)

[I8]lbdj =〈lb||dj〉 − 〈lm||dj〉tbm + 〈bl||ed〉tej − 〈lm||de〉tejtbm +
1

2
〈lm||de〉tebmj

= [I9]lbdj +
1

2
〈bl||ed〉tej + [I4]lmjd t

b
m +

1

2
〈lm||de〉tebmj.

(5.66)

A ninth intermediate, [I9], is a dependency for [I8],

[I9]lbdj =〈lb||dj〉 − 1

2
〈lb||ed〉tej , (5.67)

and the two last parentheses are

[I10]alij =〈al||ij〉+
1

2
〈al||de〉tdeij + P̂ij〈al||dj〉tdi + P̂ij

1

2
〈al||de〉tdi tej

+
1

2
〈lm||ij〉tam +

1

4
〈lm||de〉tamtdeij + P̂ij

1

2
〈lm||dj〉tdi tam + P̂ij

1

4
〈lm||de〉tdi tejtam

=〈al||ij〉+
1

2
〈al||de〉tdeij − P̂ij [I9]ladj t

d
i +

1

2
[I6]lmij t

a
m,

(5.68)

and

[I11]abdj = 〈ab||dj〉+
1

2
〈ab||de〉tej . (5.69)

In its entirety we obtain simplified T̂2 equations,

0 =〈ab||ij〉+
1

2
〈ab||de〉tdeij − [I3]li t

ab
lj − [I3]lj t

ab
il

+
1

2
[I6]lmij t

ab
lm + [I7]bd t

ad
ij + [I7]ad t

db
ij

+ P̂ijP̂ab [I8]lbdj t
ad
il − P̂ab [I10]alij t

b
l + P̂ij [I11]abdj t

d
i .

(5.70)

It is in principle impossible to find closed-form solutions for equation (5.62) and (5.70),
due to their non-linear behavior as well as the large dimensionality. Solutions can often be
found anyhow, by employing iterative methods, to numerical precision when converging.

70 CHAPTER 5. COUPLED-CLUSTER THEORY

We employ a ‘Jacobi’s method’-like iterative strategy, subtracting the ‘diagonal’ of the
simplest terms containing T̂1-amplitudes from both sides of (5.62),

t′
a
i D

a
i =fai +

∑
ld

〈la||di〉tdl +
1

2

∑
lde

〈al||de〉tdeil +
∑
d

[I1]ad t
d
i

−
∑
l

[I3]li t
a
l +

1

2

∑
lmd

[I4]lmid t
da
lm +

∑
ld

[I2]ld t
ad
il + taiD

a
i ,

(5.71)

where the negative diagonal is

Da
i = − [I1]aa + [I3]ii . (5.72)

Starting with a guess for tai , usually zero or based on an earlier converged result, one
calculates a new guess t′ ai .

The same procedure1 may equally well be applied to eq. (5.70),

t′
ab
ij D

ab
ij =〈ab||ij〉+

1

2
〈ab||de〉tdeij − [I3]li t

ab
lj − [I3]lj t

ab
il

+
1

2
[I6]lmij t

ab
lm + [I7]bd t

ad
ij + [I7]ad t

db
ij

+ P̂ijP̂ab [I8]lbdj t
ad
il − P̂ab [I10]alij t

′ b
l + P̂ij [I11]abdj t

′ d
i + tabijD

ab
ij ,

(5.73)

where the subtracted diagonal terms are

Dab
ij = −1

2
〈ab||ab〉+ [I3]ii + [I3]jj −

1

2
[I6]ijij − [I7]bb − [I7]aa . (5.74)

After one such iteration we have found a new guess for both T̂1 and T̂2 amplitudes

tai = t′
a
i ,

tabij = t′
ab
ij ,

(5.75)

and we repeat the process until results are converged, typically defined by

| t′ ai − tai | <ε1
| t′ abij − tabij | <ε2.

(5.76)

In practice it is more convenient to use the single criterion,

|∆ECCSD(t′)−∆ECCSD(t)| < εE, (5.77)

because we now can control the precision of our results through εE.

Coupled-cluster class – ‘CC’

We have implemented the iteration scheme defined in (5.71), (5.73) and (5.77) in a class,
called ‘CC’. This class should be able to work with any system derived from the ‘System’
base class, effectively exploiting the sparseness of matrix elements if defined in the system’s
‘Basis’.

5.3. IMPLEMENTING CCSD 71

Listing 5.1: The main content of the iteration loop in CC::solve ground state energy().

1 // Calculate intermediates for T1

2 mat i1 = c_i1(t1_old);

3 mat i2 = c_i2(t1_old);

4 mat i3 = c_i3(i2 , t1_old , t2_old);

5 vector <mat > i5 = c_i5(t1_old);

6 vector <mat > i4 = c_i4(i5 , t1_old);

7

8 // Calculate diagonal D_i^a

9 mat d1 = c_d1(i1 , i3);

10

11 //One iteration on T1 -equations

12 mat t1_new = c_t1(i1, i2, i3 , i4 , d1, t1_old , t2_old);

13

14 // Calculate intermediates for T2 , usign the new t_i^a values

15 i1 = c_i1(t1_new);

16 i2 = c_i2(t1_new);

17 i3 = c_i3(i2, t1_new , t2_old);

18 i5 = c_i5(t1_new);

19 i4 = c_i4(i5, t1_new);

20 vector <mat > i6 = c_i6(i5 , t1_new , t2_old);

21 mat i7 = c_i7(i1 , i2 , t1_new , t2_old);

22 vector <mat > i9 = c_i9(t1_new);

23 vector <mat > i8 = c_i8(i4 , i9, t1_new , t2_old);

24 vector <mat > i10 = c_i10(i6 , i9 , t1_new , t2_old);

25 vector <mat > i11 = c_i11(t1_new);

26

27 // Diagonal D_{ij}^{ab}

28 vector <mat > d2 = c_d2(i3 , i6, i7);

29

30 //One iteration on T2 -equations

31 vector <mat > t2_new = c_t2(i3, i6 , i7, i8, i10 , i11 , d2 ,

t1_new , t2_old);

32

33 //Store amplitudes for next iteration

34 t1_old = t1_new;

35 t2_old = t2_new;

72 CHAPTER 5. COUPLED-CLUSTER THEORY

Listing 5.2: An initial guess for the amplitudes is needed before doing iterations. By
default all amplitudes are zero, unless another starting point is supplied in ‘t1 stored’ and
‘t2 stored’ at the same time as the switch ‘use t’ is set to true. Amplitudes, tabij , are stored
as one matrix for each channel, λ, t(λ)

ξ
µ
.

1 mat t1_old; //T1 amplitudes

2 vector <mat > t2_old; //T2 amplitudes

3

4 if (use_t)

5 { //Use a supplied initial guess

6 t1_old = t1_stored;

7 t2_old = t2_stored;

8

9 } else

10 { //Use the default guess t_ij^ab = 0

11 Basis const * basis = sys ->get_basis ();

12 vector <uvec > const * mapPP = basis ->get_map_lmdXI_de ();

13 vector <uvec > const * mapHH = basis ->get_map_lmdMU_lm ();

14

15 //T1 is a (n_p x n_h) matrix

16 t1_old = zeros <mat > (basis ->get_nP (), basis ->get_nH ());

17

18 //T2 has a (n_xi x n_mu) matrix for each channel , lambda.

19 for (size_t lmd = 0; lmd < basis ->dim_lmd_2p (); lmd++)

20 {

21 size_t dimXI = mapPP ->at(lmd).size();

22 size_t dimMU = mapHH ->at(lmd).size();

23 t2_old.push_back(zeros <mat > (dimXI , dimMU));

24 }

25 }

The workhorse in ‘CC’ is the method ‘solve ground state energy()’, which contains
a loop iterating through the scheme. The implementation in listing 5.1 illustrates the
operations needed within each iteration. It is a slightly stripped-down version as the
complete implementation includes methods for printing debugging information, timing
the different terms, as well as testing for convergence. The motivation to contain the
different terms in multiple methods is mainly motivated by the need for a structured code,
but at the same time it may ease debugging and profiling. Before starting the iteration
scheme, an initial guess for the amplitudes is needed, by default zero as in listing 5.2.
An important feature is how all matrices with four indices are effectively stored as block-
diagonal structures, of type ‘std::vector<arma::mat>’. One matrix is included for each
channel, λ, indexed by configurations µ, ν or ξ.

1One may notice the use of the new T̂1 amplitudes, t′
a
i , being used when iterating the T̂2 equations, a

trick that often speeds up the convergence. This trick, however, require us to recalculate all intermediates
depending on tai using the new amplitudes t′

a
i instead.

5.3. IMPLEMENTING CCSD 73

Listing 5.3: Implementation of the second term in the T̂2 equations.

1 for (int lmd = 0; lmd < basis ->dim_lmd_2p (); lmd++)

2 t2_new.at(lmd) += 0.5 * sys ->get_v_pppp ()->at(lmd) *

t2_old.at(lmd);

In the notation of channels and configurations some terms are more straight forward
to implement than other, as shown by the second term in the T̂2 equations (5.73), here
stated in a slightly different notation,

〈ab|t′2|ij〉 ←
1

2

∑
de

〈ab||de〉〈de|t2|ij〉. (5.78)

In terms of the diagonal blocks,

〈ξ|t′2|µ〉(λ) ←
1

2

∑
ξ′

〈ξ||ξ′〉(λ)〈ξ′|t2|µ〉(λ), (5.79)

this can easily be recognized as simple matrix multiplications, one for each diagonal block,
implemented as shown in listing 5.3.

Unfortunately, not all terms are on a form directly suitable for matrix multiplication.
We put forth the second term from intermediate [I11],

[I11]abdj ←
1

2

∑
e

〈ab||de〉tej , (5.80)

or in another notation

〈ab|I11|dj〉 ←
1

2

∑
e

〈ab||de〉〈e|t1|j〉, (5.81)

as an example. The main problem with this term is the summation over e, whereas
elements with four indices are stored using configurations, i.e.

〈ξab|I11|νdj〉λ, and 〈ξab||ξde〉λ. (5.82)

In its initial form the mappings de → ξde and dj → νdj are needed for all possible
combinations of d, e, j, implying poor performance. If we could reindex this term, making
it suitable for efficient matrix multiplication, the number of times mappings are needed
would also be reduced. We do this in a simple way,

〈abd−1|I11|j〉λ1p ←
1

2
〈abd−1||e〉λ1p〈e|t1|j〉λ1p , (5.83)

where new channels and configurations are declared, redefining symmetries to be

λ︷ ︸︸ ︷
ma +mb =

λ︷ ︸︸ ︷
md +me →

λ1p︷ ︸︸ ︷
ma +mb −md =

λ1p︷︸︸︷
me

ma
s +mb

s = md
s +me

s → ma
s +mb

s −md
s = me

s

 for V̂N , (5.84)

74 CHAPTER 5. COUPLED-CLUSTER THEORY

and

λ︷ ︸︸ ︷
ma +mb =

λ︷ ︸︸ ︷
md +mj →

λ1p︷ ︸︸ ︷
ma +mb −md =

λ1p︷︸︸︷
mj

ma
s +mb

s = md
s +mj

s → ma
s +mb

s −md
s = mj

s

 for I11. (5.85)

The index of only one particle’s state determines the new channels, thus labelled λ1p,

which are also applicable to the T̂1 amplitudes, tej . All indices are effectively represented
by configurations within each one-particle channel, making this programmable as multi-
plication of block-diagonal matrices. Implementing this we encounter four stages;

1. Map from 〈ξab||ξde〉λ into 〈abd−1||e〉λ1p , only required on the first iteration, or earlier,
as the interaction matrices do not change.

2. Map 〈e|t1|j〉 into 〈e|t1|j〉λ1p at each iteration.

3. Perform a block diagonal matrix multiplication,

〈abd−1|I11|j〉λ1p =
1

2

∑
e

〈abd−1||e〉λ1p〈e|t1|j〉λ1p . (5.86)

4. Add the results back into the intermediate,

〈ab|I11|dj〉+ = 〈abd−1|I11|j〉λ1p . (5.87)

The four stages are illustrated by listings 5.4, 5.5, 5.6 and 5.7.

5.4 Hartree-Fock method

The coupled-cluster method appears as a convenient method that yields accurate results
within reasonable computation time. It depends, however, on an initial guess for the
amplitudes sufficiently close to the solution. Without this guess results will converge
slowly, or may not even converge at all. The usual starting point is to set all amplitudes
to zero, a good guess whenever the solution can be well approximated by a simple reference
determinant. If this is not sufficient one should either find a better initial guess for the
amplitudes or find a better set of basis functions. A better initial guess can be hard to
find, but basis functions can be transformed by a Hartree-Fock calculation.

Hartree-Fock (HF) is another ab initio many-body method, often used to generate a
starting point for later calculations using different post-Hartree-Fock methods. Initial
work was done by Hartree, developing the self-consistent field method more or less right
after Schrödinger published his derivation of the well known Schrödinger equation. Fock
revised Hartree’s work in 1930 by pointing out that the self-consistent field method did
not fully obey Pauli’s exclusion principle, and corrected the method into Hartree-Fock on
a functional form [2]. We will introduce the Hartree-Fock method, which is a variational
approach, in the form of a set of egeinvalue problems. With a reference determinant

5.4. HARTREE-FOCK METHOD 75

Listing 5.4: Mapping from 〈ξab||ξde〉λ into 〈abd−1||e〉λ1p , only needed once because the
matrix elements stay constant during simulations.

1 // Interaction elements <a_b_d1 ||e>

2 vector <mat > v_abd1_e; // Block diagonal matrix

3

4 // Allocate blocks filled with zeros.

5 for (int lmd1 = 0; lmd1 < basis ->dim_lmd_1p (); lmd1 ++)

6 {

7 int dimE = map_p.at(lmd1).size();

8 int dimABD1 = map_p_p_p1.at(lmd1).size();

9 v_abd1_e.push_back(zeros <mat > (dimABD1 , dimE));

10 }

11

12 //Fill elements from v_pppp

13 for (int lmd2 = 0; lmd2 < basis ->dim_lmd_2p (); lmd2 ++)

14 {

15 int dimXI = mapPP ->at(lmd2).size();

16 for (int xi_ab = 0; xi_ab < dimXI; xi_ab ++)

17 for (int xi_de = 0; xi_de < dimXI; xi_de ++)

18 {

19 //Map configurations into indices

20 int ab = mapPP ->at(lmd2)(xi_ab);

21 int a = ab % nP;

22 int b = ab / nP;

23 int de = mapPP ->at(lmd2)(xi_de);

24 int d = de % nP;

25 int e = de / nP;

26

27 //Find the new redefined channels and

configurations

28 int abd = a + (b + d * nP) * nP;

29 int abd_idx = map_p_p_p1_inv (1, abd);

30 int lmd1 = map_p_inv(0, e);

31 int e_idx = map_p_inv(1, e);

32

33 // Insert element

34 v_abd1_e.at(lmd1)(abd_idx , e_idx) = sys ->

get_v_pppp ()->at(lmd2)(xi_ab , xi_de);

35 }

36 }

76 CHAPTER 5. COUPLED-CLUSTER THEORY

Listing 5.5: Mapping from 〈e|t1|j〉 into 〈e|t1|j〉λ1p , required at each iteration.

1 // Rewriting t1

2 vector <mat > t1_e_j;

3 for (int lmd1 = 0; lmd1 < dimLMD1; lmd1 ++)

4 {

5 // Allocate a zero -filled matrix for each channel.

6 int dimP = map_p.at(lmd1).size();

7 int dimH = map_h.at(lmd1).size();

8 t1_e_j.push_back(zeros <mat > (dimP , dimH));

9

10 for (int e_idx = 0; e_idx < dimP; e_idx ++)

11 for (int j_idx = 0; j_idx < dimH; j_idx ++)

12 {

13 //Find indices from configurations

14 int e = map_p.at(lmd1)(e_idx);

15 int j = map_h.at(lmd1)(j_idx);

16

17 // Insert correct element

18 t1_e_j.at(lmd1)(e_idx , j_idx) = t1_old(e, j);

19 }

20 }

Listing 5.6: Multiply each diagonal block.

1 // Matrix mult.

2 vector <mat > i11_abd1_j;

3 for (int lmd1 = 0; lmd1 < dimLMD1; lmd1 ++)

4 i11_abd1_j.push_back (0.5 * v_abd1_e.at(lmd1) * t1_e_j.at(

lmd1));

5.4. HARTREE-FOCK METHOD 77

Listing 5.7: Terms are added back into I11.

1 //Add terms back into i11

2 for (int lmd1 = 0; lmd1 < dimLMD1; lmd1 ++)

3 {

4 int dimABD1 = map_p_p_p1.at(lmd1).size();

5 int dimJ = map_h.at(lmd1).size();

6

7 for (int abd_idx = 0; abd_idx < dimABD1; abd_idx ++)

8 for (int j_idx = 0; j_idx < dimJ; j_idx ++)

9 {

10 //Map lmd1 configurations into indices

11 int abd = map_p_p_p1.at(lmd1)(abd_idx);

12 int a = abd % nP;

13 int bd = abd / nP;

14 int b = bd % nP;

15 int d = bd / nP;

16 int j = map_h.at(lmd1)(j_idx);

17

18 //Map indices into lmd configurations

19 int ab = a + b * nP;

20 int dj = d + j * nP;

21 int lmd2 = (* mapPPinv)(0, ab);

22 int xi_ab = (* mapPPinv)(1, ab);

23 int nu_dj = (* mapPHinv)(1, dj);

24

25 //Add element

26 i11.at(lmd2)(xi_ab , nu_dj) += i11_abd1_j.at(lmd1)

(abd_idx , j_idx);

27 }

28 }

78 CHAPTER 5. COUPLED-CLUSTER THEORY

|Φ(HF)
0 〉 built out of any basis set, one could never underestimate the ground-state energy

expectation value,
〈Φ(HF)

0 |Ĥ|Φ(HF)
0 〉 = Eref ≥ 〈Ψ|Ĥ|Ψ〉 = E0, (5.88)

where E0 is the ground state of the exact solution |Ψ〉. Starting with a basis set |α〉 and
performing a unitary transformation

|p〉 =
∑
α

Cpα|α〉, (5.89)

we will try to minimize the expectation value by varying the unitary matrix C. If |Φ(HF)
0 〉 is

built up by theN lowest-lying states in the transformed basis we would find its expectation
value to be

E
[
Φ

(HF)
0

]
= 〈Φ(HF)

0 |Ĥ|Φ(HF)
0 〉 =

∑
i

〈i|ĥ0|i〉+
1

2

∑
ij

〈ij||ij〉, (5.90)

expressed in terms of our initial basis as

E
[
Φ

(HF)
0

]
=
∑
i

∑
αβ

C∗iαCiβ〈α|ĥ0|β〉+
1

2

∑
ij

∑
αβγδ

C∗iαC
∗
jβCiγCjδ〈αβ||γδ〉. (5.91)

It is here understood that i and j are hole-states in the HF basis, whereas Greek letters
come from the original basis whose sums loop over the entire basis set.

Introducing Lagrangian multipliers
∑

i ωi
∑

αC
∗
iαCiα, we find the minima of the energy

by

0 =
∂

∂C∗kκ

(
E
[
Φ

(HF)
0

]
−
∑
i

ωi
∑
α

C∗iαCiα

)
=
∑
β

Ckβ〈κ|ĥ0|β〉+
∑
j

∑
βγδ

C∗jβCkγCjδ〈κβ||γδ〉 − ωkCkκ,
(5.92)

which should hold for all k, κ, resulting in

∑
γ

Ckγ

[
〈α|ĥ0|γ〉+

∑
j

∑
βδ

C∗jβCjδ〈αβ||γδ〉

]
= ωkCkα. (5.93)

The Hartree-Fock Hamiltonian is defined as

ĥHFαγ = 〈α|ĥ0|γ〉+
∑
j

∑
βδ

C∗jβCjδ〈αβ||γδ〉, (5.94)

in order to simplify the Hartree-Fock equations, (5.93), to∑
γ

ĥHFαγ Ckγ = ωkCkα, (5.95)

which is an eigenvalue problem. The transposed coefficient matrix holds the eigenvectors
of the Hartree-Fock Hamiltonian (5.94), with eigenvalues ωk,

ĥHF (CT)col(k) = ωk(C
T)col(k). (5.96)

5.4. HARTREE-FOCK METHOD 79

Listing 5.8: Vectorized procedure to obtain Ci (C inner).

1 mat C_holeXall = C.submat(span(0, numHOLEstates - 1), span::

all);

2 mat C_inner = C_holeXall.t() * C_holeXall;

The HF Hamiltonian (5.94) depends on the transformation coefficient matrix, which
in turn consists of the Hamiltonian’s eigenvectors, a circular dependency that makes it
hard to find exact solutions, and one needs to solve it iteratively. A typical approach is to
start with an untransformed basis, being equivalent to setting C = 1̂. With this guess for
C one calculates ĥHF , whose eigenvectors leads to a new ‘guess’ for C. This procedure is
repeated a number of times, until the Hartree-Fock energy, from eq. (5.91), converges to
a selected precision.

To obtain a HF basis suitable for the CCSD machinery one simply redefines matrix
elements to be

〈p|ĥ0|q〉 =
∑
αβ

C∗pαCqβ〈α|ĥ0|β〉, (5.97)

and

〈pq||rs〉 =
∑
αβγδ

C∗pαC
∗
qβCrγCsδ〈αβ||γδ〉. (5.98)

5.4.1 Implementing Hartree-Fock

In order to create an efficient Hartree-Fock implementation one needs to rewrite sums
into matrix operations, making it as ‘vectorized’ as possible. The first simplification we
make is to define

Ci
pq =

∑
k

CkpCkq, (5.99)

easily vectorized in listing 5.8. It is now possible to simplify the energy from eq. (5.91) to

E
[
Φ

(HF)
0

]
=
∑
αβ

Ci
αβ〈α|ĥ0|β〉+

1

2

∑
αβγδ

Ci
αγC

i
βδ〈αβ||γδ〉. (5.100)

Although it is slightly simplified it is not possible to streamline the two-particle part due
to indices not matching. Once again we solve the complication by remapping the matrices.
The interaction is remapped to matrix blocks diagonal in a redefined channel, λ′,

〈αβ||γδ〉 → 〈αγ−1||δβ−1〉λ′ . (5.101)

Also mapped are the coefficients into vectors in the same channels, one column vector
with permuted indices (P), and one row vector that is not (N),

Ci
αγ → CN(λ′)αγ−1

Ci
βδ → CP (λ′)δβ−1 .

(5.102)

80 CHAPTER 5. COUPLED-CLUSTER THEORY

Listing 5.9: H0 part of hf E

1 double E_ref = accu(C_inner % h0);

In total we now have

E
[
Φ

(HF)
0

]
=
∑
αβ

Ci
αβ〈α|ĥ0|β〉

+
1

2

∑
λ′

∑
(αγ−1)

∑
(δβ−1)

CN(λ′)αγ−1〈αγ−1||δβ−1〉λ′CP (λ′)δβ−1 .
(5.103)

The energy from single-particle interactions can be obtained by the one simple statement
in listing 5.9. Two-particle interactions are slightly more complicated since we store
matrices based on the region they span,

〈hh||hh〉, 〈ph||hh〉, 〈pp||hh〉, 〈pp||ph〉, 〈pp||pp〉, (5.104)

but we need to account for all possibilities;

〈hh||hh〉,
〈ph||hh〉, 〈hp||hh〉, 〈hh||ph〉, 〈hh||hp〉,
〈pp||hh〉, 〈hh||pp〉,
〈ph||ph〉, 〈ph||hp〉, 〈hp||hp〉, 〈hp||ph〉,
〈pp||ph〉, 〈pp||hp〉, 〈ph||pp〉, 〈hp||pp〉,
〈pp||pp〉.

(5.105)

For this reason one needs to sort the coefficients whether the span hh, ph, hp or pp, created
in listing 5.10, before we calculate the energy from the two-particle interactions in (5.103).
Taking into account the different permutations of the indices seen from (5.105), we get a
corresponding number vector-matrix-vector products, illustrated for one channel in 5.11.

5.4. HARTREE-FOCK METHOD 81

Listing 5.10: Filling the coefficients from eq (5.102). CN is stored in ‘C xx1’ whereas CP

is stored in ‘C xx1 t’.

1 //FIll C_hh1

2 size_t dimHH1 = map_hh1.at(lmd).size();

3 vec C_hh1 = zeros <vec > (dimHH1);

4 vec C_hh1_t = zeros <vec > (dimHH1);

5 for (int idx_db1 = 0; idx_db1 < dimHH1; idx_db1 ++)

6 {

7 int db = map_hh1.at(lmd)(idx_db1);

8 int delta = db % nH;

9 int beta = db / nH;

10 C_hh1_t(idx_db1) = C_inner(beta , delta);

11 C_hh1(idx_db1) = C_inner(delta , beta);

12 }

13 //Fill C_pp1

14 size_t dimPP1 = map_pp1.at(lmd).size();

15 vec C_pp1 = zeros <vec > (dimPP1);

16 vec C_pp1_t = zeros <vec > (dimPP1);

17 for (int idx_db1 = 0; idx_db1 < dimPP1; idx_db1 ++)

18 {

19 int db = map_pp1.at(lmd)(idx_db1);

20 int delta = db % nP + nH;

21 int beta = db / nP + nH;

22 C_pp1(idx_db1) = C_inner(delta , beta);

23 C_pp1_t(idx_db1) = C_inner(beta , delta);

24 }

25 //Fill C_ph1

26 size_t dimPH1 = map_ph1.at(lmd).size();

27 vec C_ph1 = zeros <vec > (dimPH1);

28 vec C_ph1_t = zeros <vec > (dimPH1);

29 for (int idx_ak1 = 0; idx_ak1 < dimPH1; idx_ak1 ++)

30 {

31 int ak = map_ph1.at(lmd)(idx_ak1);

32 int a = ak % nP + nH;

33 int k = ak / nP;

34 C_ph1(idx_ak1) = C_inner(a, k);

35 C_ph1_t(idx_ak1) = C_inner(k, a);

36 }

37 //Fill C_hp1

38 size_t dimHP1 = map_hp1.at(lmd).size();

39 vec C_hp1 = zeros <vec > (dimHP1);

40 vec C_hp1_t = zeros <vec > (dimHP1);

41 for (int idx_lb1 = 0; idx_lb1 < dimHP1; idx_lb1 ++)

42 {

43 int bl = map_hp1.at(lmd)(idx_lb1);

44 int b = bl % nP + nH;

45 int l = bl / nP;

46 C_hp1(idx_lb1) = C_inner(l, b);

47 C_hp1_t(idx_lb1) = C_inner(b, l);

48 }

82 CHAPTER 5. COUPLED-CLUSTER THEORY

Listing 5.11: Two-particle part of HF energy.

1 E_tpPart = 0;

2

3 //hhhh

4 E_tpPart += as_scalar(C_hh1.t()*v_ik1_lj1.at(lmd)*C_hh1_t);

5 //phhh

6 E_tpPart += as_scalar(C_ph1.t()*v_ak1_lj1.at(lmd)*C_hh1_t);

7 E_tpPart += as_scalar(C_ph1.t()*v_ak1_lj1.at(lmd)*C_hh1_t);

8 E_tpPart += as_scalar(C_ph1_t.t()*v_ak1_lj1.at(lmd)*C_hh1);

9 E_tpPart += as_scalar(C_ph1_t.t()*v_ak1_lj1.at(lmd)*C_hh1);

10 //pphh

11 E_tpPart += as_scalar(C_ph1.t()*v_ak1_lb1.at(lmd)*C_hp1_t);

12 E_tpPart += as_scalar(C_ph1_t.t()*v_ak1_lb1.at(lmd)*C_hp1);

13 //phph

14 E_tpPart += as_scalar(C_pp1.t()*v_ac1_lj1.at(lmd)*C_hh1_t);

15 E_tpPart += as_scalar(C_pp1.t()*v_ac1_lj1.at(lmd)*C_hh1_t);

16 E_tpPart -= as_scalar(C_ph1.t()*v_al1_cj1.at(lmd)*C_ph1_t);

17 E_tpPart -= as_scalar(C_ph1.t()*v_al1_cj1.at(lmd)*C_ph1_t);

18 //ppph

19 E_tpPart += as_scalar(C_pp1.t()*v_ac1_lb1.at(lmd)*C_hp1_t);

20 E_tpPart += as_scalar(C_pp1.t()*v_ac1_lb1.at(lmd)*C_hp1_t);

21 E_tpPart += as_scalar(C_pp1_t.t()*v_ac1_lb1.at(lmd)*C_hp1);

22 E_tpPart += as_scalar(C_pp1_t.t()*v_ac1_lb1.at(lmd)*C_hp1);

23 //pppp

24 E_tpPart += as_scalar(C_pp1.t()*v_ac1_db1.at(lmd)*C_pp1_t);

25

26 E_ref += 0.5 * E_tpPart;

Chapter 6

OpenCL

This chapter serves as an overview of OpenCL, an open and royalty-free standard for
parallel programming on heterogenous systems. Topics that are important for the under-
standing of implementations presented in this thesis will be emphasized. In addition, a
more thorough study of matrix-matrix multiplication is presented, as well as historical
aspects on general-purpose computing on graphics processing units (GPGPU).

6.1 General-purpose computing on GPU

With the continuous emergence of new graphics processing units (GPUs), high compu-
tational powers reaches consumers, ranging from regular desktop users to users of high-
performance computing. Whereas regular processors have powers in the range of 10 to
100 GFLOPS1, graphic cards can reach more than TFLOPS performance. As an example
the AMD radeonhd 6970, which is used extensively in this thesis, is listed with a speed
of 2.7 TFLOPS for single precision, and 683 GFLOPS for double precision [27]. Having
a price of a few thousand NOK, graphical processing units (GPUs) should be able to
compete with larger clusters having a much higher price.

GPUs were originally, and still are, targeted mainly towards computer graphics. To
be able to produce real-time graphics with a high level of detail, such a processor must
be highly parallel. A large amount of pixels must be computed within a short time
range, often processed independently by the same set of instructions. Some programmers
did eventually see the potential of GPUs to paralellize and accelerate general purpose
programs, but the lack of standards for this forced them to translate problems into a
graphics-like problem in order to run them on GPUs. Video cards also lacked hardware
features making it even harder to program general code on them. Even today double-
precision arithmetic is supported mostly on high-end cards, and require the latest drivers.

To overcome the issues of GPU computing, a few standards arose. At the moment three
major standards exist; DirectCompute [28], CUDA [29] and OpenCL [30]. All of them
supply a language for writing accelerated code, as well as an application programming
interface (API) to control the execution of this code.

1The number of floating-point operations per second a processor can do is denoted FLOPS. This
measure is here prefixed with G, for giga (109), or T, for tera (1012).

83

84 CHAPTER 6. OPENCL

The first two standards will not be used in this thesis, mainly because of their lack
of choice. Whereas DirectCompute enforces the use of Microsoft Windows and CUDA
limits itself to NVIDIA cards, OpenCL have implementations on all common2 operating
systems for both CPUs and GPUs from Intel, AMD and NVIDIA.

6.2 The OpenCL model

The OpenCL standard [30] describes OpenCL with the following hierarchy of models:

• Platform model

• Memory model

• Execution model

• Programming model

6.2.1 Platform model

OpenCL programs consist of a host running code written in C/C++.3 This host has
access to different devices, each consisting of a number of compute units with one or more
processing elements.

The simplest setup would consist of a single-threaded host program running on the
CPU. By querying for a platform and a device the program can gain access to running
parallel code on the same CPU. This may seem illogical, but it is an easy way to program
parallel on the processor. A quad core, which is common, would typically permit four
compute units (four independent threads), with one processing element each.

A slightly more advanced configuration could consist of the simple setup, but in ad-
dition have access to the video card. The GPU would now show up as a second device,
having for example 24 compute units (SIMD cores) with 64 processing elements each.
Whereas the compute units run independently, the processing elements within a compute
unit will generally not. This hierarchy is defined by the platform model outlined in fig. 6.1.

6.2.2 Execution model

Parallel code is written in its own language ‘.cl’, a subset of the C99 standard, where
functions callable from the host are called kernels. This code is then compiled for an
already initialized device, and submitted to a command queue. The command queue is
now responsible for running this kernel once the device is ready. It is possible to submit
multiple kernels to a queue and manage their execution via events.

2Implementations exist at least for recent versions of Windows, Mac and Linux
3The OpenCL API is written in C with bindings for C++. Third party wrappers can still be found for

other languages. See for example JOCL or javaCL for java, and pyopencl for python implementations.

6.2. THE OPENCL MODEL 85

Figure 6.1: The hierarchy defined by the OpenCL platform model. A platform consists
of multiple devices, each having multiple compute units. Whereas compute units can run
independent threads, they can still contain multiple processing elements. The memory
model (6.2.3) will also fit in this hierarchy, with (from the top) global, local and private
memory residing close to corresponding layer.

Every time a kernel is queued a virtual grid, NDRange, will be defined. For every grid
point, the kernel will be executed once. This is how parallelism is achieved in OpenCL.
An NDRange can be one, two or three dimensional, and the size can be chosen arbitrarily
up to a limit defined by the device.

The entire global grid is divided into smaller local grids called work-groups. An il-
lustration of a 27x27 ‘2DRange’ composed of nine 9x9 workgroups is found in fig. 6.2.
During execution each work-item will fill one processing element. All work-items within
the same work-group will run concurrently, but on the same compute unit. The other
work-groups will run on other compute units within the same device.

6.2.3 Memory model

There are four different regions for OpenCL memory:

• Global memory is allocated by the host. Both the kernel and the host have read-
/write access. Global memory is in general the slowest type of memory, but com-
pensates with the largest memory size. This is ideal for storing input, results or
large datasets.

• Constant memory is allocated by the host, with read-only access from a kernel.
Often used when passing many parameters/options as one struct to the kernel.

• Local memory could be allocated either dynamically by the host or statically inside
a kernel. Every work group has its own independent copy of local memory, shared
among the work-items inside the group. Residing close to each compute unit this
memory is faster than global.

• Private memory is allocated statically by each work-item and not shared at all.
Being close to the processing elements it is the fastest memory. Variables declared
in kernels without specifying memory region are private by default.

A quick summary of the different memory regions can be found in table 6.1.

86 CHAPTER 6. OPENCL

Figure 6.2: A global two dimensional 27x27 NDRange. It is divided into nine work-groups,
each having 9x9 work-items.

Table 6.1: Overview of different OpenCL memory regions. R/W: read and write. R: read
only. Dyn/Stat: dynamic/static. NA: not available.

Global Constant Local Private
Host Kernel Host Kernel Host Kernel Host Kernel

Allocation Dyn NA Dyn NA Dyn Stat NA Stat
Access R/W R/W R/W R NA R/W NA R/W

6.3. MATRIX-MATRIX MULTIPLICATION 87

Figure 6.3: Outline of matrix-matrix multiplication, following its straight forward math-
ematical definition.

6.2.4 Programming model

OpenCL focuses on a data parallel programming model. Here we have multiple memory
objects that can be calculated or altered by the same set of instructions. Instead of using
loops or nested loops, our problem can be simplified by choosing appropriate global and
local sizes, as we shall see for general matrix-matrix multiplication in section 6.3. Task
parallel programming, and hybrids between these two, are also supported. GPUs however
favors the data parallel model, due to their SIMD architecture.

Single instruction multiple data, SIMD, is a type of parallel hardware where the same
instruction is performed on different sets of data at the same time. A radeonhd 6970 con-
sists of 64 processing elements within each compute unit, a SIMD core. All 64 processing
elements are required to do the same operations at all times, only differing by what data
they are working on. A work-group maps to one SIMD core, thus it is unfavorable to let
work-items within a work-group branch by for instance an if statement.

6.3 Matrix-matrix multiplication

The coupled-cluster code has its bottleneck in matrix-matrix multiplication. Take for
instance the second term of (5.70),

tabij ←
1

2
〈ab||de〉tdeij . (6.1)

Gathering indices a, b→ ξ, d, e→ ξ′ and finally i, j → µ, it can be rewritten as

tξµ ←
1

2

∑
µ′

〈ξ||ξ′〉tξ′µ, (6.2)

which is, apart from the factor 1
2
, identical to the mathematical definition of matrix-matrix

multiplication,

Cij =
∑
k

AikBkj, A ∈ Rm×p, B ∈ Rp×n, C ∈ Rm×n. (6.3)

Element Cij is here the inner product of row i in A and column j in B, as illustrated in
fig. 6.3.

88 CHAPTER 6. OPENCL

Listing 6.1: Simple matrix-matrix multiplication in OpenCL. The matrices A, B and C
refers to the same matrices as in eq. (6.3). The left matrix, A is already transposed,
‘A tr’, to improve access pattern.

1 typedef double fp;

2

3 kernel void

4 matmult(global fp* A_tr , global fp* B, global fp* C)

5 {

6 //WI global id (x,y)=(i,j)

7 int2 gid = (int2) (get_global_id (0), get_global_id (1));

8

9 // Calculate C_ij

10 fp C_ij = 0;

11 for (int k = 0; k < SIZE_P; k++)

12 C_ij += A_tr[gid.x * SIZE_P + k]

13 * B[gid.y * SIZE_P + k];

14

15 //Store into global memory again

16 C[gid.x + gid.y * SIZE_M] = C_ij;

17 }

To illustrate the cl language we consider a simple implementation for matrix-matrix
multiplication. In listing 6.1 we have a kernel taking three parameters, the matrices A,
B and C, where A is already transposed. The problem is divided into one work-item for
each value of i and j, each running the sum defined in (6.3). Running on a CPU this
would be a good way to parallelize matrix-matrix multiplication. The GPU, however,
would be penalized by slow memory access from global memory.

A way to improve memory access is to express the problem as multiplication of matrix-
blocks. Figure 6.4 shows how one block in the C matrix is the sum of the matrix product
of blocks in A and B. We set the block size to the same as the work-group size and use
a 2DRange with the same dimensionality as C. Each work-item is now responsible for
reading one element from A and one element from B into the local blocks, before summing
over elements in local memory. After the sum corresponding to block multiplication is
done, next block is loaded into local memory and so on. A complete implementation
is included in listing 6.2. All work-items must complete loading from memory before
any other work-item begin the summation, ensured by inserting a barrier. We must also
prevent any work-item to start loading next block until all work-items are done using the
current block. Thus we have two barriers, and one should note that barriers in OpenCL
can only be applied within the same work-group. Using local memory we have reduced
the number of times matrix elements need to be transfered from global memory.

The two examples of matrix-matrix multiplication shown here are not optimal solu-
tions. The first is quite inefficient and the second is not flexible, since the matrix sizes
are limited by the block size. AMD has developed its own BLAS library for GPUs, AMD
APPML, which is both faster and more flexible.

6.3. MATRIX-MATRIX MULTIPLICATION 89

Listing 6.2: Matrix-matrix multiplication in OpenCL using local memory. The matrices
A, B and C refers to the same matrices as in eq. (6.3).

1 typedef double fp;

2

3 kernel void

4 matmult(global fp* A_glb , global fp* B_glb , global fp* C_glb)

5 {

6 //WI global id (x,y)=(i,j)

7 int2 gid = (int2) (get_global_id (0), get_global_id (1));

8 //Local id (x,y)

9 int2 lid = (int2) (get_local_id (0), get_local_id (1));

10

11 //Local storage for blocks.

12 local fp A[BL_SIZ][BL_SIZ];

13 local fp B[BL_SIZ][BL_SIZ];

14

15 // Element for this WI

16 fp C_ij = 0;

17

18 //Loop over blocks

19 for(int k_block = 0; k_block < SIZ_P; k_block += BL_SIZ)

20 {

21 //Read blocks of A and B

22 barrier(CLK_LOCAL_MEM_FENCE);

23 A[lid.x][lid.y] = A_glb[gid.x + (k_block+lid.y) * SIZ_M];

24 B[lid.x][lid.y] = B_glb[(k_block+lid.x) + gid.y * SIZ_P];

25

26 //Block multiplication

27 barrier(CLK_LOCAL_MEM_FENCE);

28 for(int k_loc = 0; k_loc < BL_SIZ; k_loc ++)

29 C_ij += A[lid.x][k_loc] * B[k_loc][lid.y];

30 }

31

32 //Store into global memory again

33 C[gid.x + gid.y * SIZE_M] = C_ij;

34 }

90 CHAPTER 6. OPENCL

Figure 6.4: Outline of blocked matrix-matrix multiplication.

6.3.1 Strassen’s algorithm

The straightforward algorithm for matrix-matrix multiplication requires p multiplications
and p − 1 additions for each of the m × n elements. The total number of floating-point
operations is then mn(2p − 1) ∼ O(mnp). When the matrices A and B can be divided
into four equally sized blocks,[

C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
, (6.4)

we get eight multiplications of smaller blocks,[
C11 C12

C21 C22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
. (6.5)

Strassen discovered in 1968 how the number of multiplications could be reduced from
eight to seven [31]. Following Winograd’s approach we define several intermediates steps,

S1 = A21 + A22, T1 = B12 −B11,
S2 = S1 − A11, T2 = B22 − T1,
S3 = A11 − A21, T3 = B22 −B12,
S4 = A12 − S2, T4 = B21 − T2,

(6.6)

and need seven multiplications,

P1 = A11B11, U1 = P1 + P2,
P2 = A12B21, U2 = P1 + P4,
P3 = S1T1, U3 = U2 + P5,
P4 = S2T2, U4 = U3 + P7,
P5 = S3T3, U5 = U3 + P3,
P6 = S4B22, U6 = U2 + P3,
P7 = A22T4, U7 = U6 + P6,

(6.7)

to find the resulting C matrix as[
C11 C12

C21 C22

]
=

[
U1 U7

U4 U5

]
. (6.8)

Despite the seemingly additional work, we have reduced the number of multiplications
from 8 to 7. Since the multiplications are the computational bottleneck compared to
addition and subtraction, the number of floating point operations are clearly reduced.

6.4. IMPLEMENTATION 91

In the case of square n×n matrices with n equal to a power of two, n = 2m, the divided
blocks will have n

2
= 2m−1. Letting f(m) be the number of flops needed for the full matrix

and applying Strassen recursively we find the total number of flops to be

f(m) = 7f(m− 1) = 72f(m− 2) = · · · = 7mf(0), (6.9)

where f(0) is the one floating-point operation needed for multiplication of two numbers
(two 20× 20 matrices). For large matrices this can prove efficient, yielding a much better
scaling,

O (7m) = O
(
2log2 7m

)
= O

(
2m log2 7

)
= O

(
nlog2 7

)
≈ O

(
n2.807

)
, (6.10)

effectively saving 7/8 = 12.5% each time it is applied.

6.4 Implementation

Matrix-matrix multiplication has been considered an important aspect of this thesis, and
all functionality has been implemented in a separate object called ‘GEMM’ – GEneral
Matrix Multiplication. The default implementation, demonstrated in listing 6.3, performs
the matrix operation,

C(res) = αA(left)B(right) + βC(res), (6.11)

where the variable names used in the implementation are denoted in the subscript of
the matrices. When ‘transL’ and/or ‘transR’ is set to true A(left) and/or B(right) will be
transposed before used. Armadillo’s default operations will be used in ‘GEMM’, most
likely translated into calls to some BLAS library. Netlib [32] and GotoBLAS2 [33] are the
two implementations we have tested here.

To take advantage of different implementations all C++ statements for matrix-matrix
multiplication need to be replaced with a call to a ‘GEMM’ derived class. As an example,
the second term from the coupled-cluster T̂2 equations, eq. (5.79), will now be written as

〈ξ|t′2|µ〉(λ) = α
∑
ξ′

〈ξ||ξ′〉(λ)〈ξ′|t2|µ〉(λ) + β〈ξ|t′2|µ〉(λ), (6.12)

with α = 1
2

and β = 1. Implementing this approach, our previous listing 5.3 is altered
slightly, as shown in listing 6.4.

Also incorporated is a system for measuring the amount of time that is used on mul-
tiplication. A protected member, timer, of type ‘arma::wall clock’, is included as well as
a double, tot time, to record how much time is spent inside the ‘dgemm’ method. To get
this information one simply calls ‘get tot time()’, a function which returns the number of
seconds elapsed.

6.4.1 Strassen

Strassen’s method is implemented in a subclass of ‘GEMM’, ‘Strassen’. This subclass
adds the method ‘strassenMethod’ returning the matrix product of two matrices, ‘left’
and ‘right’, using the Strassen method. The Strassen method is applied recursively. An
integer, ‘depth’, is set to 0 for the first call, and it is raised by one each time a new level
of recursion is performed. This allows us to abort recursions at a specific level, helpful

92 CHAPTER 6. OPENCL

Listing 6.3: GEMM default implementation.

1 virtual void dgemm(

2 arma::mat &res ,

3 arma::mat const &left ,

4 arma::mat const &right ,

5 double alpha = 1,

6 double beta = 0,

7 bool transL = false ,

8 bool transR = false)

9 {

10 timer.tic();

11 if (transL == false && transR == false)

12 res = alpha * left * right + beta * res;

13 else if (transL == true && transR == false)

14 res = alpha * trans(left) * right + beta * res;

15 else if (transL == false && transR == true)

16 res = alpha * left * trans(right) + beta * res;

17 else if (transL == true && transR == true)

18 res = alpha * trans(left) * trans(right) + beta * res

;

19 tot_time += timer.toc();

20

21 return;

22 }

Listing 6.4: Second term of the coupled-cluster T̂2 equations, now using the matrix-
multiplication framework in ‘GEMM’.

1 for (int lmd = 0; lmd < basis ->dim_lmd_2p (); lmd++)

2 mult ->dgemm(//mult points to a GEMM derived object

3 t2_new.at(lmd), // Result

4 sys ->get_v_pppp ()->at(lmd), //Left

5 t2_old.at(lmd), //Right

6 0.5, 1); //alpha , beta

6.4. IMPLEMENTATION 93

Listing 6.5: Strassen overrides the ‘dgemm’ method.

1 timer.tic();

2 if (transL == false && transR == false)

3 res = alpha * strassenMethod(left , right , 0)

4 + beta * res;

5 else if (transL == true && transR == false)

6 res = alpha * strassenMethod(trans(left), right , 0)

7 + beta * res;

8 else if (transL == false && transR == true)

9 res = alpha * strassenMethod(left , trans(right), 0)

10 + beta * res;

11 else if (transL == true && transR == true)

12 res = alpha * strassenMethod(trans(left), trans(right), 0)

13 + beta * res;

14 tot_time += timer.toc();

15

16 return;

when timing whether blas routines or another level of recursion is the most beneficial for
a specific size of the matrices.

The ‘dgemm’ function is overridden as in listing 6.5, essentially the same as for
the default base-class implementation except now using the new ‘strassenMethod’. In
‘strassenMethod’ the criterion for adding one level of recursion or invoking an underlying
blas library is

3mnp < τ (mn+ np+ pm) , (6.13)

which is reduced to

n < τ (6.14)

in the case of equally sized square matrices, m = n = p. Such a criterion was first
proposed by Higham in 1990 [34]. Other criteria exist but this was chosen because only
one variable, τ , needs to be tuned. We estimate τ empirically by measuring the time a
regular ‘dgemm’ routine uses compared to doing one Strassen recursion for different sizes
m,n and p.

The first part of ‘strassenMethod’, listing 6.6, defines some integer values needed, ‘m’,
‘n’ and ‘p’ hold the size of the matrices, and ‘m2’, ‘n2’ and ‘p2’ store half their size. The
current recursion level plus one is stored in ‘dp1’. If one of the dimensions is less than two
it is not possible to split the matrices further, and if the recursion criterion, eq. (6.13), is
not met it is not beneficial to split the matrices either. These conditions are tested for,
and regular multiplication through armadillo will then be used instead.

The second part, in listing 6.7, deals with situations where matrices may have odd di-
mensions, and thus not suitable for the Strassen algorithm. We deal with these situations
using dynamic peeling. The odd rows and columns are treated separately,[

C11 c12

c21 c22

]
=

[
A11 a12

a21 a22

] [
B11 b12

b21 b22

]
=

[
A11B11 + a12b21 A11b12 + a12b22

a21B11 + a22b21 a21b12 + a22b22

]
, (6.15)

94 CHAPTER 6. OPENCL

Listing 6.6: Implementation of Strassen’s method. Continued in listing 6.7.

1 mat Strassen :: strassenMethod(

2 const mat& left ,

3 const mat& right ,

4 int depth) {

5 // Needed integer values

6 int m = left.n_rows;

7 int m2 = m / 2;

8 int n = right.n_cols;

9 int n2 = n / 2;

10 int p = left.n_cols;

11 int p2 = p / 2;

12 int dp1 = depth + 1;

13

14 // Criterion for further recursion. Tau is a class member (

double)

15 if (m < 2 || n < 2 || p < 2 || (3.0 * m * n * p) / (((double)

n) * p + ((double) m) * n + ((double) m) * p) < tau)

16 {

17 return left * right;

18 }

where A11, B11 and C11 now are the largest possible blocks with even dimensions. We
then have one multiplication,

C11 = A11B11, (6.16)

suitable for another level of Strassen, and in the end a few fix-up steps,

C11 =a12b21 + C11

c12 =A11b12 + a12b22

c21 =a21B11 + a22b21

c22 =a21b12 + a22b22,

(6.17)

where all steps may not be needed if only some of the dimensions are odd.
The third and last part of our Strassen implementation, listing 6.8, carries out the

actual Strassen algorithm, implemented straightforwardly from eqs. (6.6) and (6.7).

6.4.2 CLgemm

Matrix multiplication on GPUs through OpenCL is managed by AMD’s own library,
APPML (Accelerated Parallel Processing Math Libraries). Again the ‘dgemm’ method is
altered to use a separate function for the product itself, this time implemented in ‘clmult’.

The overhead when using GPUs is substantial, and we need to empirically find where
a CPU implementation is more efficient. We have chosen the simplest criterion, whenever
the amount of floating point operations needed is less than a threshold value armadillo’s

6.4. IMPLEMENTATION 95

Listing 6.7: Implementation of Strassen’s method. Continuation of listing 6.6 and con-
tinued in listing 6.7.

19 else if (m % 2 != 0 || n % 2 != 0 || p % 2 != 0)

20 {

21 span m2Div2(0, m2 * 2 - 1); // Spanning all elements

22 span n2Div2(0, n2 * 2 - 1); // except the last , if

23 span p2Div2(0, p2 * 2 - 1); //the total number is odd.

24 span lastM(m - 1, m - 1); // Spanning

25 span lastN(n - 1, n - 1); //the last

26 span lastP(p - 1, p - 1); // element.

27

28 mat C(m, n);

29 C(m2Div2 , n2Div2) = strassenMethod(left(m2Div2 , p2Div2),

right(p2Div2 , n2Div2), depth);

30

31 if (p % 2 != 0) //C_11 += a_12 b_21

32 C(m2Div2 , n2Div2) += left(m2Div2 , lastP) * right(lastP ,

n2Div2);

33

34 if (n % 2 != 0)

35 { //c_12 = A_11 b_12

36 C(m2Div2 , lastN) = left(m2Div2 , p2Div2) * right(p2Div2 ,

lastN);

37

38 if (p % 2 != 0) //c_12 += a_12 b_22

39 C(m2Div2 , lastN) += left(m2Div2 , lastP) * right(lastP ,

lastN);

40 }

41

42 if (m % 2 != 0)

43 { //c_21 = a_21 B_11

44 C(lastM , n2Div2) = left(lastM , p2Div2) * right(p2Div2 ,

n2Div2);

45

46 if (p % 2 != 0) //c_21 += a_22 b_21

47 C(lastM , n2Div2) += left(lastM , lastP) * right(lastP ,

n2Div2);

48 }

49

50 if (m % 2 != 0 && n % 2 != 0)

51 { //c_22 = a_21 b_12

52 C(lastM , lastN) = left(lastM , p2Div2) * right(p2Div2 ,

lastN);

53

54 if (p % 2 != 0) //c_22 += a_22 b_22

55 C(lastM , lastN) += left(lastM , lastP) * right(lastP ,

lastN);

56 }

57

58 return C;

59 }

96 CHAPTER 6. OPENCL

Listing 6.8: Implementation of Strassen’s method. Continuation of listing 6.7.

60 else

61 {

62 //left matrix

63 span lR1(0, m2 - 1); //First half of rows

64 span lR2(m2 , m - 1); // Second half of rows

65 span lC1(0, p2 - 1); //First half of columns

66 span lC2(p2 , p - 1); // Second half of columns

67 //right matrix

68 span rR1(0, p2 - 1); //First half of rows

69 span rR2(p2 , p - 1); // Second half of rows

70 span rC1(0, n2 - 1); //First half of columns

71 span rC2(n2 , n - 1); // Second half of columns

72

73 // Intermediates

74 mat S1 = left(lR2 , lC1) + left(lR2 , lC2);

75 mat S2 = S1 - left(lR1 , lC1);

76 mat S3 = left(lR1 , lC1) - left(lR2 , lC1);

77 mat S4 = left(lR1 , lC2) - S2;

78 mat T1 = right(rR1 , rC2) - right(rR1 , rC1);

79 mat T2 = right(rR2 , rC2) - T1;

80 mat T3 = right(rR2 , rC2) - right(rR1 , rC2);

81 mat T4 = right(rR2 , rC1) - T2;

82

83 // Multiplications

84 mat P1 = strassenMethod(left(lR1 ,lC1), right(rR1 ,rC1), dp1);

85 mat P2 = strassenMethod(left(lR1 ,lC2), right(rR2 ,rC1), dp1);

86 mat P3 = strassenMethod(S1 , T1 , dp1);

87 mat P4 = strassenMethod(S2 , T2 , dp1);

88 mat P5 = strassenMethod(S3 , T3 , dp1);

89 mat P6 = strassenMethod(S4 , right(rR2 , rC2), dp1);

90 mat P7 = strassenMethod(left(lR2 , lC2), T4, dp1);

91

92 //U matrices

93 mat U1 = P1 + P2;

94 mat U2 = P1 + P4;

95 mat U3 = U2 + P5;

96 mat U4 = U3 + P7;

97 mat U5 = U3 + P3;

98 mat U6 = U2 + P3;

99 mat U7 = U6 + P6;

100

101 //Fill and return the result

102 mat C(m, n);

103 C(lR1 , rC1) = U1;

104 C(lR1 , rC2) = U7;

105 C(lR2 , rC1) = U4;

106 C(lR2 , rC2) = U5;

107 return C;

108 } //End of if -else

109

110 } //End of method

6.4. IMPLEMENTATION 97

Listing 6.9: Implementation of matrix-matrix multiplication on a GPU. Continued in
listing 6.10.

1 mat CLgemm :: clmult(mat const &left , mat const &right) {

2

3 int m = left.n_rows; //Size

4 int n = right.n_cols; //of input

5 int p = left.n_cols; // matrices.

6

7 mat res = zeros <mat > (m, n); // Result

8

9 //Flops ~O(mnp)

10 double work = ((double) m) * n * p;

11

12 //Don’t use GPU if few flops are required.

13 //This threshould value is found empirically

14 //by testing where GPUs are quicker than CPUs.

15 if (work < 3e8)

16 res = left * right;

underlying functionality is used instead. Listing 6.9 shows how we find the number of
flops required in ‘clmult’, and decide whether the CPU or GPU is best suited. If there
is enough work to be done data will be pushed to the graphics card followed by invoking
the routine ‘clAmdBlasDgemm’ to calculate the matrix product, as shown in listing 6.10.

6.4.3 CLstrassen

Our ‘CLgemm’ implementation will meet severe problems. As the matrix size increases,
the device will eventually run out of available memory. In order to solve this, the matrix
needs to be partitioned into smaller blocks that can be processed one at a time. For large
matrices we also experience that applying Strassen’s method on top of AMD’s APPML
serves no purpose. The GPU is more efficient than the overhead of blocking up the
matrices.

For these reasons we have combined ‘Strassen’ and ‘CLgemm’, using the Strassen
algorithm with a modified criterion, now only applying another level of recursion when
the blocks are too big to fit on the GPU. The new criterion is described by listing 6.11,
and the parameter ‘maxSizeCL’ is found by querying the device, as in listing 6.12.

98 CHAPTER 6. OPENCL

Listing 6.10: Implementation of matrix-matrix multiplication on a GPU. Continuation of
listing 6.9

17 else

18 {

19 // memptr cannot be const in cl.

20 cl_double *A_p = const_cast <double *> (left.memptr ());

21 cl_double *B_p = const_cast <double *> (right.memptr ());

22 cl_double *C_p = res.memptr ();

23

24 // Create CL buffers , copying Host memory.

25 cl:: Buffer A_cl(context , CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR , sizeof (*A_p) * left.n_elem , A_p);

26 cl:: Buffer B_cl(context , CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR , sizeof (*B_p) * right.n_elem , B_p)

;

27 cl:: Buffer C_cl(context , CL_MEM_READ_WRITE |

CL_MEM_COPY_HOST_PTR , sizeof (*C_p) * res.n_elem , C_p);

28

29 //Run DGEMM. armadillo uses columnmajor ordering.

30 clAmdBlasDgemm(

31 clAmdBlasColumnMajor , clAmdBlasNoTrans , clAmdBlasNoTrans ,

32 m, n, p, //Size of matrices.

33 1.0, A_cl(), m, B_cl(), p,

34 0.0, C_cl(), m,

35 1, &queue (), 0, NULL , NULL);

36

37 //Read results back into C

38 queue.enqueueReadBuffer(C_cl , true , 0, sizeof (*C_p) * res.

n_elem , C_p);

39 }

40

41 return res;

42 }//End Method CLgemm :: clmult

6.4. IMPLEMENTATION 99

Listing 6.11: CLstrassen’s new criterion, compared to the original from listing 6.6. An-
other level of Strassen’s algorithm is only applied if matrices are too big to fit on the
GPU. Multiplications are then sent to ‘clmult’ instead of armadillo’s blas routines.

1 int m = left.n_rows;

2 int m2 = m / 2;

3 int n = right.n_cols;

4 int n2 = n / 2;

5 int p = left.n_cols;

6 int p2 = p / 2;

7

8 // Number of elements in the three matrices

9 size_t sizRes = m * n;

10 size_t sizLeft = m * p;

11 size_t sizRight = n * p;

12 size_t sizTOT = sizRes + sizRight + sizLeft;

13 // Number of bytes needed

14 sizTOT = sizeof (double) * sizTOT;

15

16 // Matrix small enough for Device?

17 if (sizTOT < maxSizeCL)

18 return clmult.clmult(left , right);

Listing 6.12: How to query the max number of bytes on a GPU device available for
OpenCL.

1 cl_ulong maxmem_bytes = device.getInfo <

CL_DEVICE_MAX_MEM_ALLOC_SIZE > ();

2 maxSizeCL = 0.9 * maxmem_bytes;

Part II

Results

101

Chapter 7

Results

7.1 Code validation

When developing scientific software there are often numerous potential pitfalls, small
mistakes that eventually lead to bugs affecting the results. The exact results are generally
not known prior to the calculations. Larger errors can be found easily, as we have an
estimate for the result, but the impact of an error is sometimes small enough to leave
results within the estimated range. It is then hard to determine if the deviation is a
software bug or an artifact arising from the method itself.

It is of great importance to us that the implementation is free of any errors. To
guarantee this we perform a number of tests, whose results are known prior to running
the calculations, and demand that our code can reproduce these values. In our case earlier
implementations also exist. Thus we have a foundation to build upon and test against.

7.1.1 Simple tests with non-interacting systems

First we consider systems of non-interacting particles, where the total energy is simply
the sum of the single-particle energies, as seen in eq. (3.3). The first filled shell has two
electrons with an energy of ~ω, the next filled shell has four electrons with an energy of
2~ω each, and so on. A new shell has two more electrons than the previous one, and each
electron in the new shell contributes with an energy of ~ω more than an electron from the
previous shell. Filling the F first shells there are N = F (F + 1) electrons, with a total
unperturbed energy

〈Ĥ0〉 = 2 · 1~ω + 4 · 2~ω + · · ·+ 2F · F~ω =
F∑
i=1

2i2~ω, (7.1)

a series that can be recognized as

〈Ĥ0〉 =
2F 3 + 3F 2 + F

3
~ω. (7.2)

Energies for the first seven filled shells for different values of ω are found in table 7.1.
These energies must be reproduced by both the Hartree-Fock (HF) program and the
coupled-cluster (CC) programs. In order to test this we simply set all two-body matrix
elements to zero when running our program.

103

104 CHAPTER 7. RESULTS

Table 7.1: Uncorrelated energies for the first seven filled shells for different values of ω.
Energies are measured in Hartrees.

F
E0 [Ha] 1 2 3 4 5 6 7

1.0 2.0 10.0 28.0 60.0 110.0 182.0 280.0
0.9 1.8 9.0 25.2 54.0 99.0 163.8 252.0
0.8 1.6 8.0 22.4 48.0 88.0 145.6 224.0
0.7 1.4 7.0 19.6 42.0 77.0 127.4 196.0

ω
0.6 1.2 6.0 16.8 36.0 66.0 109.2 168.0
0.5 1.0 5.0 14.0 30.0 55.0 91.0 140.0
0.4 0.8 4.0 11.2 24.0 44.0 72.8 112.0
0.3 0.6 3.0 8.4 18.0 33.0 54.6 84.0
0.2 0.4 2.0 5.6 12.0 22.0 36.4 56.0
0.1 0.2 1.0 2.8 6.0 11.0 18.2 28.0

For two interacting particles it is also possible to obtain, for selected values of the
frequency ω, results on a closed form. Furthermore, one can also, if we limit ourselves
to a small set of basis functions, obtain simple Hamiltonian matrices which can easily
be diagonalized. The simplest is to have one filled shell, N = 2, using a basis of Slater
determinants spanned by two shells, that is six single-particle states. Coupled-cluster
theory should, including single and double excitations, be able to account for all possible
determinants in this case, and therefore yield the same result as the eigenvalues obtained
by diagonalization of the full Hamiltonian matrix. The determinants encountered in this
case will all have quantum number n = 0, allowing us to denote the determinants by
angular momentum and spin only, |mpmp

s;m
qmq

s〉. The reference determinant is either

|0 ↓; 0 ↑〉 or |0 ↑; 0 ↓〉. (7.3)

Only excitations preserving M = 0 and Ms = 0 from the ground state can be created,
restricting possible determinants to

|0 ↓; 0 ↑〉, |0 ↑; 0 ↓〉,
| − 1 ↓; +1 ↑〉, |+ 1 ↑;−1 ↓〉,
|+ 1 ↓;−1 ↑〉, | − 1 ↑; +1 ↓〉.

(7.4)

The left column has the same states as the right column, except for the two particles
being swapped. Omitting the explicit spin notation, and considering only the three left
states in (7.4), the Hamiltonian matrix to diagonalize is

Ĥ =

2ω + 〈0; 0||0; 0〉 〈0; 0|| − 1; +1〉 〈0; 0||+ 1;−1〉
〈−1; +1||0; 0〉 4ω + 〈−1; +1|| − 1; +1〉 〈−1; +1||+ 1;−1〉
〈+1;−1||0; 0〉 〈+1;−1|| − 1; +1〉 4ω + 〈+1;−1||+ 1;−1〉

 , (7.5)

or

Ĥ =

3.2533 0.3133 0.3133
0.3133 4.8617 0.2350
0.3133 0.2350 4.8617

 , (7.6)

7.1. CODE VALIDATION 105

for ω = 1. This matrix has as its lowest eigenvalue,

E0 = 3.1523[Ha], (7.7)

a results which is exactly reproduced by our implementation, to numerical precisions. For
three shells, as in [2], we have the ground state at

E0 = 3.0386[Ha], (7.8)

which is also reproduced.

7.1.2 Effective interaction

For two electrons and ω = 1.0 the exact result is known to be E0 = 3[Ha] [35], a result
we would like the two-particle case to converge towards. The standard interaction is rep-
resented by the Coulomb interaction, which is repulsive in our case. Due to its divergence
at r = 0, if one uses a harmonic oscillator basis (our favorite choice), the convergence in
terms of this basis will be slow, since the harmonic oscillator wave functions are smooth
at r = 0. For this reason we investigate also the use of an effective interaction, previ-
ously implemented with great success first in nuclear physics and later also for quantum
dots [36].

An effective interaction is obtained by solving the two-particle problem in an untrun-
cated Hilbert space and by projecting the Hamiltonian into the truncated space by a
similarity transformation. The lowest eigenvalue of this effective, truncated, Hamiltonian
should now be the same as for the exact result with a standard interaction in an infinite
space. For more than two particles we will no longer get the same eigenvalue. The idea,
however, is that the contribution from two-particle interactions still are accounted more
precisely, compared to a standard interaction. All two-particle elements, both for stan-
dard and effective interactions, are produced and written to file using the OpenFCI [37]
library.

We test our program by running with one filled shell (two electrons) using an effective
interaction, and observe that we get the exact value of E0 = 3[Ha] for ω = 1 irrespective
of the basis size. In this test we use an energy-cut model space, EC(R), as shown in
fig. 7.1. The coupled-cluster method works in the direct-product space, DP(R), in princi-
ple suggesting that half of the elements are zeroed out. Despite yielding exact results for
two particles this has shown convergence problems for larger systems [3], and we therefore
use a basis that is twice as big, EC(2R), when producing the interactions, and simply
omit elements not suitable for the coupled-cluster approach. At the cost of introducing an
error, assumed to be fairly small in the case of a large basis, we gain better convergence.

7.1.3 Earlier results

There is also a number of previously obtained results that we should be able to reproduce
with our new program. We reproduce the HF and CCSD results of Lohne et al. [36] for
both a Hartree-Fock and a harmonic-oscillator basis.

Summarizing, we reproduce earlier results, the code is consistent with full diagonal-
ization for two particles, and effective interactions are used correctly. All tests performed
indicate that our code is working correctly.

106 CHAPTER 7. RESULTS

Figure 7.1: An effective interaction is obtained in an infinite basis and transformed into
an energy-cut model space, EC(R). The coupled-cluster approach uses a direct-product
model space, DP(R), suggesting that half of the elements are unnecessary. Also shown to
have convergence problems, we use a larger energy-cut model space, EC(2R), and omit
elements that do not fit inside the direct-product space. For a large basis, the omitted
elements are assumed to be close to zero, resulting in a small induced error.

7.2 Efficiency

We like to believe that our implementation [6] has pushed the boundary with respect
to which calculations are possible to run on a single node. Different optimizations are
done in order to get the program efficient without the penalty of loosing flexibility. The
main improvement is how all parts are now given in terms of transition channels, reducing
the dimensionality off all terms drastically. Another improvement is seen by exploring
different approaches to matrix-matrix multiplications. We start by presenting benchmarks
for the matrix-matrix multiplications themselves, continuing thereafter with a discussion
on the efficiency of our program.

7.2.1 Optimized matrix-matrix multiplication

The main workhorse in this program is the multiplication of matrices, whose dimension
increases with increasing system and basis size. In the coupled-cluster machinery the most
expensive term, eq. (5.79), scales as O (dim(ξ)2 · dim(µ)) for each block of a transition
channel, where dim(ξ) is the number of particle-particle configurations, and dim(µ) is the
number of hole-hole configurations. We typically end up multiplying two matrices, A and
B with sizes of

A ∈ Rdim(ξ)×dim(ξ) and B ∈ Rdim(ξ)×dim(µ). (7.9)

The widest channel, M = Ms = 0, has two hole-hole configurations for two particles, six
hole-hole configurations for six particles (see fig. 7.2). As more particles are added the
number of configurations increase rapidly. A more comprehensive list of the number of
both hole-hole and particle-particle configurations in this channel is listed in table 7.2.

7.2. EFFICIENCY 107

Table 7.2: Listed are the number of hole-hole configurations, Mµ ≡ maxλ dim(µ), and the
number of particle-particle configurations, Mξ ≡ maxλ dim(ξ), in the widest channel. The
most expensive term for CCSD scales as M2

ξMµ, equal to n4
pn

2
h if not using block-diagonal

matrices.

N
(Mµ,Mξ) 2 6 12 20 30 42 56

20 (2,2842) (6,2766) (16,2664) (32,2528) (58,2378) (94,2198) (144,2016)
22 (2,3764) (6,3680) (16,3566) (32,3414) (58,3244) (94,3040) (144,2830)

R
24 (2,4866) (6,4774) (16,4648) (32,4480) (58,4290) (94,4062) (144,3824)
26 (2,6164) (6,6064) (16,5926) (32,5742) (58,5532) (94,5280) (144,5014)
28 (2,7674) (6,7566) (16,7416) (32,7216) (58,6986) (94,6710) (144,6416)
30 (2,9412) (6,9296) (16,9134) (32,8918) (58,8668) (94,8368) (144,8046)

Figure 7.2: The three different hole-hole states with M = Ms = 0 for six particles.
Counting the multiplicity of swapping the two particles there are six hole-hole states in
total.

108 CHAPTER 7. RESULTS

We remind the reader about the four different classes for matrix-matrix multiplications
encountered in section 6.4:

GEMM is the straight-forward CPU implementation, using armadillos built-in functions.
This translates directly into calls to an underlying blas1 library. Two libraries are
tested here; GotoBLAS2 [33] and Netlib [32]. Netlib is the reference implementation
of blas, whereas K. Goto’s implementation is hand-optimized, running in parallel
on all cores, and considered one of the fastest implementations.

Strassen implements the Strassen method. Only one level of recursion is applied, and,
when an improvement is seen, more recursions are also tested.

CLgemm holds the GPU accelerated code. Matrices are pushed to the video card,
AMD’s blas routine is called, and results are transfered back to the host.

CLstrassen combines the Strassen algorithm with AMD’s blas routine. Matrices are
split according to Strassen’s algorithm only when matrices become too large for the
graphics card. The submatrices are thereafter fed to ‘CLgemm’ for multiplication.

The different implementations for matrix-matrix multiplications are first tested by
calculating the product of two matrices, A and B, defined in (7.9), filled with random
numbers. This corresponds to the most expensive calculation in CCSD. In fig. 7.3 we see
how the implementations perform for 2, 12, 30 and 56 electrons, and a basis size of 20−30
oscillator shells. The ‘GEMM’ base class is used with both Netlib and Goto’s blas library
as backend. Whereas Netlib is running serially, Goto’s implementation utilizes all four
cores on the test machine, having a stock Intel i7-920 CPU clocked at 2.67 GHz and a
radeon hd 6970 video card. AMD’s APPML library is used through both the ‘CLgemm’
and ‘CLstrassen’ classes. To avoid running out of memory on the GPU, ‘CLstrassen’
splits the matrices by applying a Strassen recursion whenever matrices fill more than 90%
of the memory on the GPU. This amount was chosen as a safety precaution, but could
most likely be higher. Not doing such a splitting results in an error when using ‘CLgemm’
for large calculations.

For two electrons we see clearly the disadvantages of using a GPU or Strassen’s method.
The right matrix is no more than two elements wide, making it unsuitable for such a
massive parallelization. The Strassen algorithm cannot be considered beneficial for narrow
matrices, as one recursion level more than doubles the wall time. Also seen is a dramatic
amount of overhead performing the Strassen splitting after the GPU runs out of memory
at 26 shells. Increasing the number of particles, the right matrix will widen slightly, ending
at 144 elements wide for N = 56. It is still a fairly thin matrix, neither Strassen’s nor
the GPU implementations can hold up against Goto’s implementation, known to perform
well in parallel over shared memory. Compared to Netlib’s reference implementation, now
more than ten times slower and barely included in the figure, parallel implementations
prove their usefulness.

The results from the coupled-cluster benchmarks do not point toward any gain by
using GPUs, a feature which is most likely a consequence of overhead from data-copying.
The overhead is also significant in the Strassen methods. We believe there is room to
optimize further this overhead. As the GPU implementation seems to be more efficient

1Basic Linear Algebra Subprograms

7.2. EFFICIENCY 109

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 22 24 26 28 30

T
im

e
 [

s
]

Shells R

Largest multiplication in CCSD. N = 2.

GOTO
GOTO Strassen

APPML
APPML Strassen

Netlib
Netlib Strassen

(a) N = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 22 24 26 28 30

T
im

e
 [

s
]

Shells R

Largest multiplication in CCSD. N = 12.

GOTO
GOTO Strassen

APPML
APPML Strassen

Netlib
Netlib Strassen

(b) N = 12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 22 24 26 28 30

T
im

e
 [

s
]

Shells R

Largest multiplication in CCSD. N = 30.

GOTO
GOTO Strassen

APPML
APPML Strassen

Netlib
Netlib Strassen

(c) N = 30

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 22 24 26 28 30

T
im

e
 [

s
]

Shells R

Largest multiplication in CCSD. N = 56.

GOTO
GOTO Strassen

APPML
APPML Strassen

Netlib
Netlib Strassen

(d) N = 56

Figure 7.3: Time usage computing the widest channel in the most expensive term from
the coupled-cluster T̂2 equations.

110 CHAPTER 7. RESULTS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 22 24 26 28 30

T
im

e
 [

s
]

Shells R

Largest multiplication in HFsys. N = 2.

GOTO
GOTO Strassen

APPML
APPML Strassen

(a) N = 2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 22 24 26 28 30

T
im

e
 [

s
]

Shells R

Largest multiplication in HFsys. N = 12.

GOTO
GOTO Strassen

APPML
APPML Strassen

(b) N = 12

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 22 24 26 28 30

T
im

e
 [

s
]

Shells R

Largest multiplication in HFsys. N = 30.

GOTO
GOTO Strassen

APPML
APPML Strassen

(c) N = 30

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 22 24 26 28 30

T
im

e
 [

s
]

Shells R

Largest multiplication in HFsys. N = 56.

GOTO
GOTO Strassen

APPML
APPML Strassen

(d) N = 56

Figure 7.4: Time usage computing the widest channel in the transformation to a Hartree-
Fock basis.

for large systems, it is also believed that GPUs could be a better alternative when the
system size is increased even further.

Compared to the transformation into a Hartree-Fock basis, eq. (5.98), which scales
as maxλ dim(ξ)3 when multiplying two square matrices of size dim(ξ), we see that the
coupled-cluster calculation is no longer the bottleneck. In fig. 7.4 we study the time used
to multiply two random matrices, whose size matches the largest matrices appearing in
the HF-basis transformation. The power of exploiting graphic cards emerges clearly from
these calculations. The APPML implementation is approximately four times faster than
GotoBLAS. Unfortunately we once again see how unfavorable it is to apply a Strassen
splitting to prevent running out of memory on the GPU. After such a splitting our GPU
implementation runs at most twice as fast as GotoBLAS. Netlib’s reference implementa-
tion is now up to 100 times slower than the best methods, and is not included in the plot.

For the narrow matrices in the amplitude equations, fig. 7.3, one level of Strassen proved
a significant disadvantage. Considering the time usage for the square matrices in fig. 7.4

7.2. EFFICIENCY 111

Table 7.3: Time used by Goto’s and Netlib’s blas multiplying two square matrices, for
different levels of Strassen splitting.

(a) GOTO blas, matrix size
9412× 9412.

Level Time [s] Size
0 40.04 9412
1 37.54 4706
2 37.42 2353
3 46.45 1176
4 52.18 588

(b) Netlib blas, matrix size
3764× 3764.

Level Time [s] Size
0 68.31 3764
1 63.07 1882
2 47.09 941
3 41.58 470
4 40.02 235
5 39.85 117
6 35.42 58
7 36.36 29
8 53.55 14

we see a small speedup by applying Strassen’s method. Only one Strassen recursion is
applied in the figures, merely to see if there is a potential performance gain using such a
method. As a recursive method, Strassen can be applied more than once, and we want
to see how many levels of recursion that are ideal. Table 7.3(a) shows the time usage for
GotoBLAS2 with different levels of Strassen when multiplying the large square matrices
encountered for two electrons in 30 shells. One, or at most two, levels of recursion are
advantageous, not even gaining the theoretical speedup of 12.5%. Our initial tests used
Netlib’s BLAS library and showed a remarkable improvement. An example is shown in
table 7.3(b), effectively reducing the time consumption by almost 50% for 3764 × 3764
matrices. Despite the good speedup for Netlib combined with Strassen, it is, in this case,
still more than an order of magnitude slower than the ‘CLgemm’ GPU implementation
or GotoBLAS2.

7.2.2 Other implementations

The first Master’s project on the topic of writing a C++ coupled-cluster program was
completed in 2010 by M. P. Lohne [3]. His thesis involved developing a coupled-cluster
C++ library for calculations on quantum dots. The use of an effective interaction was
studied, along with exploring the use of a Hartree-Fock basis to improve the calculations.
A number of interesting aspects were seen, but the code was limited to fairly small sys-
tems, mainly because the sums were implemented as loops through elements stored in
Blitz++ [38] arrays. Elemental access through a linear-algebra library, such as Blitz++,
proves inefficient although it has the advantage of freeing the programmer of complica-
tions and bugs from memory-management. Lohne, who reached calculations up to 20
electrons and 10 shells, mentions how his code is neither optimized nor parallelized, but
still he laid the ground stone for such a study, and concluded his thesis with a remark on
how future work may include more than 50 electrons in probably 16-20 shells.

M. H. Jørgensen [2] continued by optimizing Lohne’s library, partly in collaboration

112 CHAPTER 7. RESULTS

Table 7.4: Wall time used for running coupled-cluster calculations with ω = 1.0 and
a standard interaction. Iterations stop after the energy converges to 1 · 10−7. Time is
measured either in seconds or [mm:ss]. Prev. is the previous program from [2], cur. is
the current implementation [6] running on GPUs.

(a) N = 2

R Prev Cur Factor
10 2.9 0.9 3.2
12 8.9 2.5 3.6
14 25 6.4 3.9
16 1:01 15 4.1
18 2:12 33 4.0

(b) N = 6

R Prev Cur Factor
10 27 1.4 19
12 1:24 3.4 25
14 3:29 8.8 24
16 7:11 19 23
18 16:45 43 23

(c) N = 12

R Prev Cur Factor
10 5:13 3.6 87
12 17:45 9.1 117
14 51:20 19 162
16 129:05 39 199
18 287:50 1:13 237

with Y. M. Wang [4]2. Their optimizations consisted mainly of replacing Blitz++ con-
structs with raw pointer syntax and employing a block-diagonal representation for the
toughest parts of the interactions. An example of how successful the optimizations were
is mentioned for 12 particles in a basis of ten major oscillator shells. Here Lohne’s pro-
gram ran for 35 hours compared to their optimized library which used approximately four
minutes and 30 seconds.

At the beginning of this thesis a decision was made to redesign the entire program
to fit a different coding style. A linear-algebra library was reintroduced, this time Ar-
madillo [39], and a more aggressive object orientation was implemented throughout.
Stronger encapsulation was implemented, resulting in fewer classes and a cleaner syn-
tax without loosing the flexibility. Different systems now actually follow a hierarchy, and
we have successfully decoupled matrix-matrix multiplications from the main program as
a separate module (class). Timing and debugging is also included, available by invoking
simple switches or similar, although turned off by default.

We have compared the time consumption for a few runs in table 7.4. For the case of
12 particles in ten shells our code uses less than four seconds, 35000 times faster than the
implementation of Lohne. Compared with the optimized code of Jørgensen and Wang we
see a three to four times speedup for two particles, more than 20 times for six particles, and
some hundred times speedup for twelve electrons. Of importance here is how the speedup
scales better with increasing number of particles. This is a consequence of reducing the
dimensionality of all expressions in terms of channels and configurations.

2Jørgensen and Wang collaborated on optimizing a shared code base, but Wang studied a slightly
different system.

7.2. EFFICIENCY 113

Table 7.5: Time used for different parts of the calculations. Run on a fat node with 128GB
of memory. Matrix multiplications are accelerated by the use of a GPU in the ‘CLstrassen’
class. As GotoBLAS was not successfully installed here, the GPU implementation is used.

(a) N = 20, R = 20, ω = 1.0

Part Time [s] %
Create system & read file 36.43 15.6%
Hartree-Fock calculation 20.43 8.7%
Hartree-Fock basis 99.93 42.7%
(Spent in matrix multiplication) (79.39) (33.9%)
Coupled cluster calculation 76.98 32.9%
(Spent in matrix multiplication) (24.29) (10.4%)
Total 234.05 100.0%

(b) N = 56, R = 30, ω = 5.0

Part Time [s] %
Create system & read file 928 9.7%
Hartree-Fock calculation 449 4.7%
Hartree-Fock basis 5894 61.7%
(Spent in matrix multiplication) (5034) (52.7%)
Coupled cluster calculation 2281 23.9%
(Spent in matrix multiplication) (897) (9.4%)
Total 9556 100.0%

In table 7.5 we have dissected the time our program uses in the different parts. Two
tests are run, one for 20 particles in 20 oscillator shells and one for 56 particles in 30 shells.
More particles would lead to convergence problems already at ω > 1.0. Simulating 30
major oscillator shells, corresponding to 930 single-particle basis functions, requires 30GB
of memory for storing the two-body matrix elements. Counting also the transformed
elements of the HF basis, 60GB are required to store all matrix elements. In addition a
remapped, temporary, copy of elements is created during simulations, resulting in almost
100GB of memory needs. To accommodate this need we have used a computer with
128GB of memory and a radeon hd 6970 GPU.

The largest test takes 160 minutes, where almost 100 of them are spent calculating
the transformed HF basis. Matrix multiplication stands for more than 60% of wall time.
We see that further optimizations should be targeted at the basis transformation first,
in particular focusing on finding a more efficient way of multiplying the large square
matrices. For the coupled-cluster part, which now takes up only a fourth of all execution
time, there is evidence of a bottleneck other than matrix multiplication. Time usage for
the coupled-cluster calculation is dissected even further in table 7.6, showing the five most
time-consuming parts. Three parts stands out: the second term of the T̂2 equations, the
second term in [I11] as well as creating additional mappings and remapped interaction
elements. The second term from [I11], eq. (5.81), is known to depend on remapping of
elements, a reason why it appears as slow. Further improvements in terms of efficiency

114 CHAPTER 7. RESULTS

Table 7.6: The most time-consuming terms of CCSD. Labeled ‘Init. maps’ is the time
spent inside the method ‘CC::init additional mappings()’ which creates mappings not
included by the ‘Basis’ class.

(a) N = 20, R = 20, ω = 1.0.

Part Time [s]
Init. maps 19.9
[I11] #2 17.5

T̂2 #2 9.4

T̂2 #8 4.8
[I10] 3.7

(b) N = 56, R = 30, ω = 5.0.

Part Time [s]
[I11] #2 656

Init. maps 455

T̂2 #2 329
[I10] 152

T̂2 #8 140

will for the coupled-cluster part require a more efficient way of mapping such elements,
as much as we need to speed up the matrix multiplications.

7.3 Convergence analysis

To be able to give a good estimate of the ground state energy we study how the energy
converges as a function of the size of the single-particle basis. Including higher shells will
contribute less to the ground state energy than lower shells. If the energy is altered by an
amount ∆RE0 when increasing the basis from R to R+ 2 shells, we expect that a further
increase of the basis will alter the energy by a smaller amount, i.e.

∆R+2E0 < ∆RE0. (7.10)

It is also believed that including triple excitations contributes less than including double
excitations, and so on, yielding a framework to estimate how close we get to the exact
results. This can be simulated by full configuration interaction (FCI) calculations in a
given number of shells. A comparison with FCI is done below in section 7.5.2.

We label the energy obtained in a basis of R oscillator shells ER
M , where M is the

method used, either CCSD or HF. In order to study the convergence properties we define
the relative difference in the energy at a specific number of shells to be,

εRM =

∣∣∣∣ER
M − ER−2

M

ERmax
M

∣∣∣∣ . (7.11)

The number of significant figures in our results below reflect the degree of convergence
for the coupled-cluster energies.

For two, six and twelve particles, with ω = 1.0, this measure of convergence is visu-
alized in fig. 7.5. With few particles and a strong potential, convergence is seen to be
obtained quickly for the HF energy, fully converged for more than ten shells using the
standard interaction. Only the standard interaction sees such a good convergence for the
HF energy, as using Veff the energy is still altered by the fourth figure for 24 shells, i.e.

7.3. CONVERGENCE ANALYSIS 115

0 x 10
-4

1 x 10
-4

2 x 10
-4

3 x 10
-4

4 x 10
-4

 16 18 20 22 24 26 28 30

ε
R

H
F

R

Relative convergence, ω=1.0

N=2, Veff
N=6, Veff

N=12, Veff
N=2, Vstd
N=6, Vstd

N=12, Vstd

(a) HF

0 x 10
-5

5 x 10
-5

10 x 10
-5

15 x 10
-5

20 x 10
-5

 16 18 20 22 24 26 28 30

ε
R

C
C

S
D

R

Relative convergence, ω=1.0

N=2, Veff
N=6, Veff

N=12, Veff
N=2, Vstd
N=6, Vstd

N=12, Vstd

(b) CCSD

Figure 7.5: Relative convergence for N = 2, 6 and 12 for ω = 1.0.

0 x 10
-4

1 x 10
-4

2 x 10
-4

3 x 10
-4

4 x 10
-4

 16 18 20 22 24 26 28 30

ε
R

H
F

R

Relative convergence, ω=1.0

N=20, Veff
N=30, Veff
N=42, Veff
N=20, Vstd
N=30, Vstd
N=42, Vstd

(a) HF

0 x 10
-5

5 x 10
-5

10 x 10
-5

15 x 10
-5

20 x 10
-5

 16 18 20 22 24 26 28 30

ε
R

C
C

S
D

R

Relative convergence, ω=1.0

N=20, Veff
N=30, Veff
N=42, Veff
N=20, Vstd
N=30, Vstd
N=42, Vstd

(b) CCSD

Figure 7.6: Relative convergence for N = 20, 30 and 42 for ω = 1.0.

ε24
HF > 10−4. The CCSD energy, however, converges rapidly for an effective interaction to

under 5 ·10−5 before 16 shells. At least 30 shells are required to get the same convergence
for the standard interaction.

Raising the number of particles, now for 20, 30 and 42 electrons in fig. 7.6, we see the
same pattern. The Hartree-Fock energy is fully converged when reaching R = 20 using
the standard interaction. Still the effective interaction holds ε24

HF > 10−4. The CCSD
energy also behaves similarly to the case with few particles, although converging slightly
slower. It is remarkable to see how well coupled cluster performs up to 42 particles, with
an error respective to the truncated basis at the level of the fifth leading digit.

When the frequency drops to ω = 0.1, as in fig. 7.7, we still see a fully converged
Hartree-Fock energy for the standard interaction, and a slightly slower convergence for
the effective interaction. Furthermore, we observe that the effective interaction no longer
leads to an improvement in convergence for CCSD. Except for the two-particle case, where
an effective interaction yields the correct result anyhow, both approaches follow similar
curves. Compared to a strongly confined system an effective interaction now performs
worse and the standard interaction slightly better.

The last case we study is N = 20, 30 and 42 with a confinement strength of ω = 0.7.
This is the lowest potential strength that still converges for 42 electrons, albeit being far
from the limit seen for N = 20. The convergence looks consistent with the other strongly

116 CHAPTER 7. RESULTS

0 x 10
-4

5 x 10
-4

10 x 10
-4

15 x 10
-4

20 x 10
-4

 16 18 20 22 24 26 28 30

ε
R

H
F

R

Relative convergence, ω=0.1

N=2, Veff
N=6, Veff

N=12, Veff
N=2, Vstd
N=6, Vstd

N=12, Vstd

(a) HF

0 x 10
-5

2 x 10
-5

4 x 10
-5

6 x 10
-5

8 x 10
-5

10 x 10
-5

 16 18 20 22 24 26 28 30

ε
R

C
C

S
D

R

Relative convergence, ω=0.1

N=2, Veff
N=6, Veff

N=12, Veff
N=2, Vstd
N=6, Vstd

N=12, Vstd

(b) CCSD

Figure 7.7: Relative convergence for N = 2, 6 and 12 for ω = 0.1.

0 x 10
-4

1 x 10
-4

2 x 10
-4

3 x 10
-4

4 x 10
-4

 16 18 20 22 24 26 28 30

ε
R

H
F

R

Relative convergence, ω=0.7

N=20, Veff
N=30, Veff
N=42, Veff
N=20, Vstd
N=30, Vstd
N=42, Vstd

(a) HF

0 x 10
-5

5 x 10
-5

10 x 10
-5

15 x 10
-5

20 x 10
-5

 16 18 20 22 24 26 28 30

ε
R

C
C

S
D

R

Relative convergence, ω=0.7

N=20, Veff
N=30, Veff
N=42, Veff
N=20, Vstd
N=30, Vstd
N=42, Vstd

(b) CCSD

Figure 7.8: Relative convergence for N = 20, 30 and 42 for ω = 0.7.

confined examples, approaching the same level of convergence for Rmax although the slope
appears to be somewhat steeper.

The use of an effective interaction has shown to improve the convergence of CCSD
calculations. Using an effective interaction leads to an acceptable convergence already
at 20 shells, i.e. ε20

CCSD < 5 · 10−5. Similar results are, for the standard interaction, not
obtained before 30 shells. Weakly bound systems, however, seem to be the exception, as
seen in fig. 7.7. It is unclear why the use of an effective interaction no longer yields an
improvement for small oscillator frequencies. One possible reason we suspect is that the
omitted elements from the doubly-sized energy-cut model space discussed in section 7.1.2
contribute more in this case. To clear the issue it is possible to use the same energy-cut
model space for both the effective and the standard interaction, and once again compare
results. It is also possible to look at the effective interaction elements directly and see
whether the omitted values increase relative to those within the direct-product space when
ω is lowered. This issue has not been investigated further here.

7.4. LOWERING THE FREQUENCY 117

7.4 Lowering the frequency

In order to be able to reach the low oscillator frequencies, down to 0.2 or lower for systems
with less than 20 electrons and ω ≤ 1.0 for larger systems, we need to apply a new strategy
for the initial guess in the iterative schemes. No longer can we set the coefficient matrix in
Hartree-Fock, C, nor the coupled-cluster amplitudes, tai and tabij , to zero. In principle these
values can be set to anything, and we get the energy eigenvalue of an unknown state, if
it converges. Such a procedure may succeed, although it has one major flaw. Setting the
coefficients to zero reproduces the reference Slater determinant, the exact ground state for
a non-interacting system, in the first guess. Considering the interacting system to be not
too different from the uncorrelated, we assume the method to converge toward the ground
state. Other values, if not carefully selected, can make the calculations to converge to
other states which may have a small overlap with the ground state.

For a tightly bound system, say for a strong potential where ω = ω1, we see no conver-
gence issues. The system is now determined mostly by the large single-particle contribu-
tion, leaving correlations to determine only a fraction of the total energy. Our zero-based
guess for the coefficients now holds sufficient, and after a number of iterations we find a
ground-state energy of E0(ω1) as well as coefficients C(ω1), tai (ω1) and tabij (ω1).

We now claim that both the energy and the coefficients vary only by a small amount
whenever the frequency is also varied by a small change, ∆ω, i.e.

∆ω ≡ ω1 − ω2 → 0⇒


|C(ω1)− C(ω2)| → 0,

|tai (ω1)− tai (ω2)| → 0,

|tabij (ω1)− tabij (ω2)| → 0,

|E0(ω1)− E0(ω2)| → 0.

(7.12)

Although (7.12) is left unproven here, we see clearly such a behavior in practice. Applied
iteratively, we now store coefficients from one run, lower the frequency, then calculate the
new coefficients and energy, taking the stored coefficients as initial values. Allowing us to
reach previously unavailable frequencies, this technique also increases the CPU time by
the amount of intermediate ω values needed. It is believed that we could push the lower
level somewhat further by taking smaller intermediate steps, ∆ω.

In order to study the role of correlations for different number of particles when lowering
the frequency, ω, we define the relative correlation energy

χ =

∣∣∣∣∣ECCSD − 〈Ĥ0〉
ECCSD

∣∣∣∣∣ , (7.13)

where 〈Ĥ0〉 is the energy of an uncorrelated system. Uncorrelated energies for specific
values of N and ω can be found in table 7.1. We naturally expect the two limits

lim
ω→0

χ = 1, and lim
ω→∞

χ = 0, (7.14)

as a tightly bound system is dominated by the high single-particle energy. Also, as ω tends
to zero we obtain a free electron-gas with no external potential where all the energy is a

118 CHAPTER 7. RESULTS

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

χ

ω

N=2

N=6

N=12

N=20

N=30

N=42

N=56

Figure 7.9: Relative correlation energy, χ, defined in eq. 7.13.

consequence of correlations. The results for χ are shown in fig. 7.9. From this figure we
see that interactions are increasingly important when the oscillator frequency is lowered.
Furthermore, we see an increase in correlations whenever more particles are added to the
system.

Considering once again how convergence with respect to the basis size was slower for
increasing number of particles in fig. 7.6, we see here that this is in the region where
correlations are more important. The more particles are interacting with each other, the
larger is also the likelihood of exciting particles above the Fermi level. As we have a
truncation in the number of excitations accounted for, the slow convergence is most likely
due to important correlations that are missing when including only singles and doubles.

Also studied are correlations with respect to the Hartree-Fock energy, defined similar
to χ, except that we replace 〈Ĥ0〉 with EHF ,

Ξ =

∣∣∣∣ECCSD − EHFECCSD

∣∣∣∣ . (7.15)

If we recall how the Hartree-Fock method treats a many-body system as an uncorrelated
system, only transforming the single-particle basis, we can interpret Hartree-Fock theory
as solving an uncorrelated system where each electron is subjected to a mean field set up
by the other electrons. As the system becomes less bound we see an increasing role of
beyond mean-field corrections. Seen from fig. 7.10, the highest values are for few particles
in a weakly bound potential. We believe the findings here imply that a truncation in the
number of excitations included in the coupled-cluster equations, here singles and doubles,
affects the results less for more particles in a stronger potential. Adding more particles it
is then possible to justify a mean-field approach, which serves a better scaling than more
exact methods.

7.5 Comparison with other methods

Coupled-cluster theory truncated at the level of singles and doubles will, as already dis-
cussed, not give us the exact ground-state eigenvalue of the Hamiltonian. We have seen

7.5. COMPARISON WITH OTHER METHODS 119

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1

Ξ

ω

N=2

N=6

N=12

(a) N = 2, 6 and 12

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 0.5 1 1.5 2 2.5 3

Ξ

ω

N=20

N=30

N=42

N=56

(b) N = 20, 30, 42 and 56

Figure 7.10: Relative correlation energy, Ξ, beyond the mean-field approximation, EHF ,
as defined in eq. 7.15.

120 CHAPTER 7. RESULTS

how the energy changes beyond the Hartree-Fock calculation, but other methods are also
of interest to compare with.

7.5.1 Monte-Carlo methods

First we compare our CCSD results with Monte-Carlo methods. Variational Monte Carlo
(VMC) results are here obtained by the library toffyrn::qvmc [40] (a program written by
the present author), while the Diffusion Monte Carlo (DMC) results are supplied by a
fellow master’s student, K. R. Leikanger. The variational Monte Carlo results should be
taken as a first approximation only. Taking any trial function ΨT and solving the integral,

E [ΨT (a)] =

∫
Ψ∗T (X, a)HΨT (X, a)dX∫
|ΨT (X, a)|2 dX

≥ E0, (7.16)

one never underestimates the ground-state energy. The degrees of freedom are denoted by
X, whereas a is a set of variational parameters. By constructing a good trial function, and
finding the optimal values for the variational parameters, one can get a result close to the
real energy. In practice such a function is, unfortunately, hard to find. Diffusion Monte
Carlo on the other hand is considered quite accurate, but scales exponentially with the
system size, and is thus not practical for larger systems. The calculation for 20 electron,
as an example, takes more than four hours. For comparison this is more than CCSD uses
for 56 electrons in 30 shells.

Actual results are found in table 7.7. Here the relative difference in the correlation
energy is calculated as

∆DMC
CCSD =

∣∣∣∣∣ECCSD − EDMC

EDMC − 〈Ĥ0〉

∣∣∣∣∣ . (7.17)

There is good agreement between all methods. VMC stands out as the least accurate
method always overshooting the energy, a consequence of a too simple trial function.
For two particles DMC and CCSD provide close to the exact result. Using an effective
interaction the only error for CCSD now comes from the omitted elements from the double-
sized energy-cut model space, as discussed in section 7.1.2. For more than two particles
the relative difference is between 0.08% and 1.04%, the highest for low frequencies and
few particles. As this is the same region where beyond mean-field correlation became
important, the increasing error could point towards a need to include more than singles
and doubles. Still the error is at most ∼ 1%.

Assuming that DMC can be interpreted as the benchmark result for the ground state
energies, we may once again study the convergence with respect to the basis size, now
defining the true error as ECCSD−EDMC . In the same way as seen in [41] for configuration
interaction we plot the error on logarithmic scales in fig. 7.11. The relation

ln(ECCSD − EDMC) ≈ C + α ln(R) (7.18)

is expected. The figure shows straight lines as expected, and the slope, α, is extracted
from linear regression. In all cases we see that α ≈ 1 for the standard interaction, a result
that is consistent with the findings of S. Kvaal [41].

7.5. COMPARISON WITH OTHER METHODS 121

Table 7.7: Energies obtained by various methods. CCSD comes from our coupled cluster
implementation using an effective interaction and 24 shells. Variational Monte Carlo
results are found using the library ‘toffyrn::qvmc’ [40]. Diffusion Monte Carlo results
were supplied by K. R. Leikanger. The relative difference of CCSD and DMC, defined in
eq. (7.17), is also listed. Energies are listed in Hartrees.

N ω CCSD DMC ∆DMC
CCSD VMC

1.0 3.00021 3.00000(3) 0.02% 3.0003(2)
2 0.5 1.65987 1.65975(2) 0.02% 1.6603(3)

0.1 0.44080 0.44087(3) 0.03% 0.4419(2)

1.0 20.1734 20.1597(2) 0.13% 20.194(2)
6 0.5 11,8055 11.7888(2) 0.25% 11.811(2)

0.1 3.5805 3.5539(1) 1.04% 3.581(2)

1.0 65.7399 65.700(1) 0.11% 65.790(5)
12 0.5 39.2194 39.159(1) 0.24% 39.237(4)

0.1 12.3497 12.269(0) 0.85% 12.377(4)

20
1.0 155.9569 155.8824(7) 0.08% 156.061(6)
0.28 62.0676 61.9273(6) 0.31% 62.130(7)

 0.0001

 0.001

 0.01

 10 12 14 16 18 20 22 24 26 28 30

E
0
 -

 3
.0

R

N=2, ω=1.0

Vstd, α=-1.191
Veff, α=-1.668

(a) N = 2

 0.01

 0.1

 10 12 14 16 18 20 22 24 26 28 30

E
0
 -

 2
0

.1
5

9
7

R

N=6, ω=1.0

Vstd, α=-0.8348
Veff, α=-0.3015

(b) N = 6

 0.01

 0.1

 1

 10 12 14 16 18 20 22 24 26 28 30

E
0
 -

 6
5
.7

0
0

R

N=12, ω=1.0

Vstd, α=-0.9799
Veff, α=-0.4981

(c) N = 12

Figure 7.11: We plot the error in the energy for both the standard and the effective inter-
action, taking the energy obtained by DMC as the exact. Both axes are on a logarithmic
scale, and the slope, α, is found by linear regression. Energies are listed in Hartrees.

122 CHAPTER 7. RESULTS

In the case of an effective interaction, the slope is not as steep when considering N = 6
and 12, even though the line lies lower than the one for a standard interaction. This may
mean that, using an effective interaction, the results actually converge slower than for a
standard interaction at large R, which may come unexpected. However, considering the
discussions of Lohne et al. in Ref. [36], it is clear that this is once again a consequence of
beyond-doubles contributions becoming more important.

7.5.2 Full configuration interaction

Full configuration interaction includes all possible excitations, finding the eigenvalues of
the full Hamiltonian. For N particles distributed in n states the Hilbert space has the
dimensionality

dim(H) =

(
n
N

)
. (7.19)

As an example 12 electrons distributed in 10 oscillator shells, that is n = 110, results in ∼
3.5 ·1015 possible determinants, already well beyond the current limit for FCI solvers [42].
For the largest systems run here, we have 56 electrons and 30 oscillator shells, equivalent
to 930 basis functions, yielding an enormous amount of ∼ 4.5 · 1090 combinations. In this
sense FCI calculations are restricted to a very limited basis size, although including all
possible excitations. CC on the other hand allows a large basis size, but serves equations
that are hard to derive and implement already for triples. For this reason, CC codes for
quadruples or higher are seldom seen.

We have compared our CCSD results with FCI results obtained by fellow master’s
studen F. B. Olsen. The difference between the two methods is the error we make when
truncating the number of included excitations, here limited to singles and doubles. It is of
importance to remember that the excitations in coupled cluster are included non-linearly.
This means that selected excitations of higher order are also included through the cluster
operators to higher powers than one. The most accurate energy obtained by CCSD (i.e.
including the largest basis) is also listed, to give a perspective on the error due to the
truncation respective to the basis size.

Results for selected frequencies, ω, using the standard Coulomb interaction, are found
in table 7.8. For six particles the two methods differ at the second decimal in the energy.
When ω = 1.0 or 0.5 the difference between CCSD and FCI is seen to be less than the
error respective to the basis truncation. First at ω = 0.1 the two errors are comparable.

The dimensionality grows quickly for FCI. Having six particles distributed in six shells
the run time is approximately three to four hours. Running CCSD with the same number
of particles, but using 30 shells instead, the program completes in less than three hours
on the same hardware. For 12 particles FCI results are not calculated for more than four
shells. Increasing the basis to include five shells would increase the estimated run time to
one day or more. The contributions of higher excitations are still on the order of 10−2[Ha],
whereas the corrections made by increasing the basis size is more than one Hartree, thus
100 times more important.

As seen, the contribution obtained by increasing the basis size is much larger than the
correction coming from inclusion of all excitations, already for 12 particles. Configuration

7.5. COMPARISON WITH OTHER METHODS 123

Table 7.8: Comparison with full configuration-interaction (FCI) results supplied by fel-
low master’s student F. B. Olsen. Obtained with a standard interaction. The differing
decimals are highlighted. Energies are listed in Hartrees. The difference in energies are
denoted ∆, which is either the difference between CCSD and FCI, or the difference in the
energy of CCSD due to basis truncation.

(a) N = 6

ω R CCSD FCI ∆

3 21.42323172 21.42062118 2.6 · 10−3

4 20.42820553 20.41589181 1.2 · 10−2

1.0 5 20.33138914 20.31679827 1.5 · 10−2

6 20.27324671 20.25725213 1.6 · 10−2

30 20.18349343 9.0 · 10−2

3 12.90122455 12.89723259 4.0 · 10−3

4 12.05615503 12.03695836 1.9 · 10−2

0.5 5 11.93410621 11.91311827 2.1 · 10−2

6 11.86345461 11.84042104 2.3 · 10−2

30 11.81170403 5.2 · 10−2

3 4.208076509 4.149563782 5.9 · 10−2

4 3.829020715 3.797449624 3.2 · 10−2

0.1 5 3.666397817 3.648168769 1.8 · 10−2

6 3.596913442 3.568045420 2.9 · 10−2

30 3.582049703 1.5 · 10−2

(b) N = 12

ω R CCSD FCI ∆

1.0 4 70.32360770 70.31288325 1.1 · 10−2

30 65.76965411 4.6 · 100

0.5 4 43.30832473 43.29209961 1.6 · 10−2

30 39.23828570 4.1 · 100

0.1 4 15.20219384 15.18780086 1.4 · 10−2

30 12.35523927 2.8 · 100

124 CHAPTER 7. RESULTS

Table 7.9: Comparison with full configuration-interaction (FCI) results supplied by fellow
master’s student F. B. Olsen. Obtained for 12 electrons with an effective interaction.
The differing decimals are highlighted. Energies are listed in Hartrees. The difference
in energies are denoted ∆, which is either the difference between CCSD and FCI, or the
difference in the energy of CCSD due to the basis truncation.

ω R CCSD FCI ∆

1.0 4 68.82777180 68.81915300 8.6 · 10−3

24 65.73989433 3.1 · 100

0.5 4 41.84036480 41.78768685 5.2 · 10−2

24 39.21941226 2.6 · 100

0.1 4 13.62610897 13.52425691 1.0 · 10−1

24 12.34969310 1.3 · 100

interaction is for this reason a method that is limited to small systems. Since results con-
verge quicker respective to the basis size when using an effective interaction, the energies
for 12 particles are also compared here. Results from table 7.9 point toward an increase in
the importance of including more excitations than those of CCSD. The error with respect
to the limited basis size, however, is still an order of magnitude larger than that of the
limited number of included excitations.

The limited correction FCI yields, together with the the large amounts of CPU hours
needed, indicates that it is a method not well suited for quantum dots consisting of more
than 12 particles. If high precision is required it is also possible to implement the triples
correction to coupled cluster. Including triples, coupled cluster theory is known to yield
even more precise results [36]. On the other hand CC as implemented here is restricted
to closed-shell systems, a restriction that does not applies for FCI. However, it is possible
to perform coupled cluster studies with one particle attached or removed or two particles
attached or removed.

7.6 Tables

This chapter holds the complete collection of results obtained. The label F stands for
the number of filled shells. F = 1 means two particles in the lowest shell, F = 2 six
particles in the two lowest shells and so forth. We first present results obtained by the
use of a harmonic-oscillator basis in tables 7.10-7.15, followed by results obtained with a
Hartree-Fock basis in tables 7.16-7.34.

In all tables the different columns correspond to different values of R, the number of
oscillator shells included in the basis. The rows on the other hand correspond to different
harmonic oscillator frequencies, ω, which is a measure of the confinement strength. For
the calculations that did not converge, we use the label ‘DNC’.

7.6. TABLES 125

Table 7.10: Standard interaction, F = 1, HO basis. Energies are listed in Hartrees.
ECCSD 10 12 14 16 18 20

1.0 3.0069 3.0055 3.0046 3.0039 3.0034 3.0030
0.9 2.7459 2.7446 2.7437 2.7431 2.7426 2.7423
0.8 2.4817 2.4805 2.4797 2.4792 2.4788 2.4784
0.7 2.2138 2.2128 2.2120 2.2115 2.2112 2.2109
0.6 1.9414 1.9405 1.9399 1.9395 1.9391 1.9389
0.5 1.6635 1.6628 1.6622 1.6619 1.6616 1.6614
0.4 1.3785 1.3779 1.3775 1.3772 1.3770 1.3769
0.3 1.0840 1.0835 1.0832 1.0830 1.0829 1.0828
0.28 1.0236 1.0232 1.0229 1.0227 1.0226 1.0225
0.2 0.7752 0.7749 0.7747 0.7746 0.7745 0.7745
0.1 0.4411 0.4411 0.4410 0.4410 0.4410 0.4409
0.05 0.2541 0.2541 0.2541 0.2541 0.2541 0.2541
0.01 DNC DNC 0.5781 0.6304 DNC DNC

Table 7.11: Effective interaction, F = 1, HO basis. Energies are listed in Hartrees.
ECCSD 10 12 14 16 18 20

1.0 3.0009 3.0007 3.0005 3.0004 3.0003 3.0003
0.9 2.7403 2.7401 2.7400 2.7399 2.7398 2.7398
0.8 2.4766 2.4764 2.4763 2.4762 2.4762 2.4761
0.7 2.2093 2.2091 2.2090 2.2089 2.2089 2.2088
0.6 1.9375 1.9373 1.9372 1.9372 1.9371 1.9371
0.5 1.6602 1.6601 1.6600 1.6600 1.6599 1.6599
0.4 1.3759 1.3758 1.3758 1.3757 1.3757 1.3757
0.3 1.0821 1.0820 1.0820 1.0820 1.0820 1.0819
0.28 1.0218 1.0218 1.0218 1.0217 1.0217 1.0217
0.2 0.7741 0.7741 0.7740 0.7740 0.7740 0.7740
0.1 0.4408 0.4408 0.4408 0.4408 0.4408 0.4408
0.05 0.2541 0.2541 0.2541 0.2541 0.2541 0.2541
0.01 0.0738 0.0738 0.0738 0.0738 0.0738 0.0738

126 CHAPTER 7. RESULTS

Table 7.12: Standard interaction, F = 2, HO basis. Energies are listed in Hartrees.
ECCSD 10 12 14 16 18 20

1.0 20.2043 20.1947 20.1885 20.1843 20.1812 20.1789
0.9 18.6033 18.5944 18.5887 18.5848 18.5819 18.5798
0.8 16.9703 16.9621 16.9570 16.9534 16.9508 16.9488
0.7 15.2995 15.2922 15.2876 15.2844 15.2821 15.2803
0.6 13.5830 13.5767 13.5727 13.5699 13.5679 13.5664
0.5 11.8098 11.8045 11.8011 11.7988 11.7971 11.7958
0.4 9.9630 9.9588 9.9562 9.9543 9.9530 9.9520
0.3 8.0154 8.0125 8.0106 8.0093 8.0084 8.0077
0.28 7.6100 7.6073 7.6056 7.6044 7.6036 7.6030
0.2 5.9158 5.9142 5.9131 5.9124 5.9119 5.9115
0.1 3.5398 3.5394 3.5392 DNC DNC DNC
0.05 1.9742 DNC DNC
0.01 DNC

Table 7.13: Effective interaction, F = 2, HO basis. Energies are listed in Hartrees.
ECCSD 10 12 14 16 18 20

1.0 20.1660 20.1646 20.1639 20.1634 20.1631 20.1629
0.9 18.5676 18.5664 18.5658 18.5654 18.5652 18.5650
0.8 16.9375 16.9365 16.9360 16.9357 16.9355 16.9353
0.7 15.2699 15.2691 15.2687 15.2685 15.2683 15.2682
0.6 13.5570 13.5564 13.5561 13.5559 13.5558 13.5557
0.5 11.7877 11.7873 11.7871 11.7870 11.7869 11.7869
0.4 9.9454 9.9452 9.9450 9.9450 9.9449 9.9449
0.3 8.0028 8.0027 8.0027 8.0027 8.0027 8.0027
0.28 7.5985 7.5984 7.5984 7.5984 7.5984 7.5984
0.2 5.9089 5.9089 5.9088 5.9088 5.9088 5.9088
0.1 3.5392 3.5390 3.5389 3.5388 3.5388 3.5387
0.05 2.0215 2.0152 2.0104 DNC DNC DNC
0.01 0.6119 0.6021 0.5968

7.6. TABLES 127

Table 7.14: Standard interaction, F = 3, HO basis. Energies are listed in Hartrees.
ECCSD 10 12 14 16 18 20

1.0 65.8065 65.7673 65.7443 65.7292 65.7186 65.7107
0.9 60.7696 60.7330 60.7116 60.6976 60.6878 60.6805
0.8 55.6144 55.5806 55.5610 55.5481 55.5391 55.5324
0.7 50.3192 50.2886 50.2709 50.2594 50.2513 50.2453
0.6 44.8551 44.8281 44.8125 44.8023 44.7952 44.7900
0.5 39.1810 39.1580 39.1447 39.1361 DNC DNC
0.4 33.2355 33.2168 DNC DNC
0.3 26.9178 DNC
0.28 25.5956
0.2 DNC

Table 7.15: Effective interaction, F = 3, HO basis. Energies are listed in Hartrees.
ECCSD 10 12 14 16 18 20

1.0 65.6831 65.6745 65.6700 65.6674 65.6657 65.6645
0.9 60.6549 60.6470 60.6429 60.6405 60.6389 60.6378
0.8 55.5092 55.5020 55.4983 55.4961 55.4947 55.4937
0.7 50.2247 50.2183 50.2150 50.2132 50.2117 50.2108
0.6 44.7725 44.7670 44.7640 44.7623 44.7611 44.7603
0.5 39.1119 39.1072 39.1046 39.1030 39.1020 39.1013
0.4 33.1818 33.1777 33.1754 33.1741 DNC DNC
0.3 26.8814 26.8782 DNC DNC
0.28 25.5628 DNC
0.2 DNC

128
C
H
A
P
T
E
R

7.
R
E
S
U
L
T
S

Table 7.16: Standard interaction, F = 1. CCSD results are calculated using the obtained HF basis. Energies are listed in Hartrees.
EHF 10 12 14 16 18 20 22 24 26 28 30

1.0 3.1619 3.1619 3.1619 3.1619 3.1619 3.1619 3.1619 3.1619 3.1619 3.1619 3.1619
0.9 2.8983 2.8983 2.8983 2.8983 2.8983 2.8983 2.8983 2.8983 2.8983 2.8983 2.8983
0.8 2.6311 2.6311 2.6311 2.6311 2.6311 2.6311 2.6311 2.6311 2.6311 2.6311 2.6311
0.7 2.3596 2.3596 2.3596 2.3596 2.3596 2.3596 2.3596 2.3596 2.3596 2.3596 2.3596
0.6 2.0829 2.0829 2.0829 2.0829 2.0829 2.0829 2.0829 2.0829 2.0829 2.0829 2.0829
0.5 1.7997 1.7997 1.7997 1.7997 1.7997 1.7997 1.7997 1.7997 1.7997 1.7997 1.7997
0.4 1.5080 1.5080 1.5080 1.5080 1.5080 1.5080 1.5080 1.5080 1.5080 1.5080 1.5080
0.3 1.2044 1.2044 1.2044 1.2044 1.2044 1.2044 1.2044 1.2044 1.2044 1.2044 1.2044
0.28 1.1417 1.1417 1.1417 1.1417 1.1417 1.1417 1.1417 1.1417 1.1417 1.1417 1.1417
0.2 0.8823 0.8823 0.8823 0.8823 0.8823 0.8823 0.8823 0.8823 0.8823 0.8823 0.8823
0.1 0.5256 0.5256 0.5256 0.5256 0.5256 0.5256 0.5256 0.5256 0.5256 0.5256 0.5256
0.05 0.3178 0.3178 0.3178 0.3178 0.3178 0.3178 0.3178 0.3178 0.3178 0.3178 0.3178
0.01 0.1028 0.1028 0.1028 0.1028 0.1028 0.1028 0.1028 0.1028 0.1028 0.1028 0.1028

ECCSD 10 12 14 16 18 20 22 24 26 28 30

1.0 3.0069 3.0055 3.0046 3.0039 3.0034 3.0030 3.0027 3.0024 3.0022 3.0020 3.0019
0.9 2.7459 2.7446 2.7437 2.7431 2.7426 2.7423 2.7420 2.7418 2.7416 2.7414 2.7413
0.8 2.4817 2.4805 2.4797 2.4792 2.4788 2.4784 2.4782 2.4779 2.4778 2.4776 2.4775
0.7 2.2138 2.2128 2.2120 2.2115 2.2112 2.2109 2.2106 2.2104 2.2103 2.2101 2.2100
0.6 1.9414 1.9405 1.9399 1.9395 1.9391 1.9389 1.9387 1.9385 1.9384 1.9382 1.9381
0.5 1.6635 1.6628 1.6622 1.6619 1.6616 1.6614 1.6612 1.6611 1.6610 1.6609 1.6608
0.4 1.3785 1.3779 1.3775 1.3772 1.3770 1.3769 1.3767 1.3766 1.3765 1.3764 1.3764
0.3 1.0840 1.0835 1.0832 1.0830 1.0829 1.0828 1.0827 1.0826 1.0825 1.0825 1.0824
0.28 1.0236 1.0232 1.0229 1.0227 1.0226 1.0225 1.0224 1.0223 1.0222 1.0222 1.0221
0.2 0.7752 0.7749 0.7747 0.7746 0.7745 0.7745 0.7744 0.7744 0.7743 0.7743 0.7743
0.1 0.4411 0.4411 0.4410 0.4410 0.4410 0.4409 0.4409 0.4409 0.4409 0.4409 0.4409
0.05 0.2541 0.2541 0.2541 0.2541 0.2541 0.2541 0.2541 0.2541 0.2541 0.2541 0.2541
0.01 0.0738 0.0738 0.0738 0.6304 DNC DNC DNC DNC DNC DNC DNC

7.6.
T
A
B
L
E
S

129

Table 7.17: Effective interaction, F = 1. CCSD results are calculated using the obtained HF basis. Energies are listed in Hartrees.
EHF 10 12 14 16 18 20 22 24

1.0 3.1429 3.1461 3.1484 3.1501 3.1514 3.1525 3.1533 3.1541
0.9 2.8795 2.8827 2.8849 2.8866 2.8879 2.8890 2.8898 2.8905
0.8 2.6126 2.6157 2.6179 2.6196 2.6209 2.6219 2.6227 2.6234
0.7 2.3415 2.3445 2.3467 2.3483 2.3496 2.3506 2.3514 2.3521
0.6 2.0653 2.0682 2.0703 2.0719 2.0732 2.0741 2.0749 2.0756
0.5 1.7826 1.7855 1.7875 1.7891 1.7903 1.7912 1.7920 1.7926
0.4 1.4916 1.4943 1.4963 1.4978 1.4989 1.4998 1.5006 1.5012
0.3 1.1888 1.1914 1.1933 1.1946 1.1957 1.1966 1.1973 1.1979
0.28 1.1264 1.1290 1.1308 1.1321 1.1332 1.1341 1.1347 1.1353
0.2 0.8681 0.8705 0.8721 0.8734 0.8744 0.8752 0.8758 0.8763
0.1 0.5138 0.5157 0.5171 0.5182 0.5190 0.5196 0.5202 0.5206
0.05 0.3083 0.3098 0.3109 0.3118 0.3124 0.3129 0.3134 0.3137
0.01 0.0971 0.0980 0.0987 0.0992 0.0996 0.1000 0.1002 0.1004

ECCSD 10 12 14 16 18 20 22 24

1.0 3.0009 3.0007 3.0005 3.0004 3.0003 3.0003 3.0002 3.0002
0.9 2.7403 2.7401 2.7400 2.7399 2.7398 2.7398 2.7397 2.7397
0.8 2.4766 2.4764 2.4763 2.4762 2.4762 2.4761 2.4761 2.4761
0.7 2.2093 2.2091 2.2090 2.2089 2.2089 2.2088 2.2088 2.2088
0.6 1.9375 1.9373 1.9372 1.9372 1.9371 1.9371 1.9371 1.9371
0.5 1.6602 1.6601 1.6600 1.6600 1.6599 1.6599 1.6599 1.6599
0.4 1.3759 1.3758 1.3758 1.3757 1.3757 1.3757 1.3757 1.3757
0.3 1.0821 1.0820 1.0820 1.0820 1.0820 1.0819 1.0819 1.0819
0.28 1.0218 1.0218 1.0218 1.0217 1.0217 1.0217 1.0217 1.0217
0.2 0.7741 0.7741 0.7740 0.7740 0.7740 0.7740 0.7740 0.7740
0.1 0.4408 0.4408 0.4408 0.4408 0.4408 0.4408 0.4408 0.4408
0.05 0.2541 0.2541 0.2541 0.2541 0.2541 0.2541 0.2541 0.2541
0.01 0.0738 0.0738 0.0738 0.0738 0.0738 0.0738 0.0738 0.0738

130
C
H
A
P
T
E
R

7.
R
E
S
U
L
T
S

Table 7.18: Standard interaction, F = 2. CCSD results are calculated using the obtained HF basis. Energies are listed in Hartrees.
EHF 10 12 14 16 18 20 22 24 26 28 30

1.0 20.7192 20.7192 20.7192 20.7192 20.7192 20.7192 20.7192 20.7192 20.7192 20.7192 20.7192
0.9 19.1108 19.1108 19.1108 19.1108 19.1108 19.1108 19.1108 19.1108 19.1108 19.1108 19.1108
0.8 17.4693 17.4693 17.4693 17.4693 17.4693 17.4693 17.4693 17.4693 17.4693 17.4693 17.4693
0.7 15.7884 15.7883 15.7883 15.7883 15.7883 15.7883 15.7883 15.7883 15.7883 15.7883 15.7883
0.6 14.0597 14.0597 14.0597 14.0597 14.0597 14.0597 14.0597 14.0597 14.0597 14.0597 14.0597
0.5 12.2713 12.2713 12.2713 12.2713 12.2713 12.2713 12.2713 12.2713 12.2713 12.2713 12.2713
0.4 10.4052 10.4052 10.4052 10.4052 10.4052 10.4052 10.4052 10.4052 10.4052 10.4052 10.4052
0.3 8.4314 8.4314 8.4314 8.4314 8.4314 8.4314 8.4314 8.4314 8.4314 8.4314 8.4314
0.28 8.0196 8.0196 8.0196 8.0196 8.0196 8.0196 8.0196 8.0196 8.0196 8.0196 8.0196
0.2 6.2935 6.2935 6.2935 6.2935 6.2935 6.2935 6.2935 6.2935 6.2935 6.2935 6.2935
0.1 3.8524 3.8524 3.8524 3.8524 3.8524 3.8524 3.8524 3.8524 3.8524 3.8524 3.8524
0.05 2.3791 2.3790 2.3790 2.3790 2.3790 2.3790 2.3790 2.3790 2.3790 2.3790 2.3790
0.01 0.7999 0.7947 0.7936 0.7935 0.7935 0.7935 0.7935 0.7935 0.7935 0.7935

ECCSD 10 12 14 16 18 20 22 24 26 28 30

1.0 20.2161 20.2063 20.2000 20.1957 20.1925 20.1901 20.1882 20.1867 20.1854 20.1844 20.1835
0.9 18.6162 18.6070 18.6012 18.5972 18.5943 18.5921 18.5903 18.5889 18.5877 18.5868 18.5860
0.8 16.9845 16.9761 16.9708 16.9671 16.9645 16.9624 16.9608 16.9596 16.9585 16.9576 16.9569
0.7 15.3153 15.3078 15.3030 15.2997 15.2973 15.2955 15.2940 15.2929 15.2920 15.2912 15.2905
0.6 13.6008 13.5942 13.5900 13.5871 13.5850 13.5834 13.5822 13.5812 13.5804 13.5797 13.5791
0.5 11.8301 11.8245 11.8209 11.8185 11.8167 11.8154 11.8143 11.8135 11.8128 11.8122 11.8117
0.4 9.9866 9.9820 9.9792 9.9773 9.9759 9.9748 9.9739 9.9733 9.9727 9.9723 9.9719
0.3 8.0434 8.0401 8.0380 8.0366 8.0356 8.0348 8.0342 8.0337 8.0333 8.0330 8.0327
0.28 7.6390 7.6360 7.6341 7.6328 7.6319 7.6312 7.6306 7.6302 7.6298 7.6295 7.6292
0.2 5.9501 5.9481 5.9469 5.9460 5.9454 5.9450 5.9446 5.9443 5.9441 5.9439 5.9438
0.1 3.5841 3.5835 3.5831 3.5828 3.5826 3.5825 3.5823 3.5822 3.5822 3.5821 3.5820
0.05 2.1776 2.1775 2.1774 2.1773 2.1773 2.1772 2.1772 2.1772 2.1772 2.1772 DNC
0.01 0.6267 0.6282 DNC DNC DNC DNC DNC DNC DNC DNC

7.6.
T
A
B
L
E
S

131

Table 7.19: Effective interaction, F = 2. CCSD results are calculated using the obtained HF basis. Energies are listed in Hartrees.
EHF 10 12 14 16 18 20 22 24

1.0 20.6295 20.6461 20.6576 20.6659 20.6723 20.6773 20.6813 20.6847
0.9 19.0228 19.0391 19.0503 19.0585 19.0648 19.0697 19.0736 19.0769
0.8 17.3831 17.3991 17.4100 17.4181 17.4242 17.4290 17.4329 17.4361
0.7 15.7043 15.7199 15.7306 15.7384 15.7444 15.7491 15.7529 15.7560
0.6 13.9781 13.9933 14.0037 14.0112 14.0170 14.0216 14.0253 14.0283
0.5 12.1927 12.2073 12.2173 12.2246 12.2302 12.2346 12.2381 12.2411
0.4 10.3302 10.3441 10.3537 10.3606 10.3659 10.3701 10.3735 10.3763
0.3 8.3611 8.3741 8.3831 8.3896 8.3946 8.3985 8.4017 8.4043
0.28 7.9504 7.9632 7.9720 7.9785 7.9834 7.9872 7.9903 7.9929
0.2 6.2297 6.2416 6.2497 6.2556 6.2602 6.2637 6.2666 6.2689
0.1 3.7991 3.8091 3.8159 3.8208 3.8246 3.8275 3.8299 3.8319
0.05 2.3353 2.3437 2.3493 2.3534 2.3564 2.3589 2.3608 2.3624
0.01 0.7659 0.7704 0.7742 0.7772 0.7793 0.7810 0.7823 0.7834

ECCSD 10 12 14 16 18 20 22 24

1.0 20.1766 20.1753 20.1746 20.1742 20.1739 20.1737 20.1735 20.1734
0.9 18.5792 18.5781 18.5775 18.5771 18.5769 18.5768 18.5766 18.5766
0.8 16.9502 16.9494 16.9489 16.9486 16.9484 16.9483 16.9482 16.9482
0.7 15.2841 15.2834 15.2831 15.2829 15.2827 15.2827 15.2826 15.2826
0.6 13.5729 13.5724 13.5722 13.5721 13.5721 13.5720 13.5720 13.5720
0.5 11.8057 11.8055 11.8055 11.8055 11.8055 11.8055 11.8055 11.8055
0.4 9.9662 9.9663 9.9664 9.9665 9.9665 9.9666 9.9666 9.9667
0.3 8.0275 8.0278 8.0280 8.0282 8.0283 8.0285 8.0285 8.0286
0.28 7.6241 7.6245 7.6247 7.6249 7.6251 7.6252 7.6253 7.6254
0.2 5.9392 5.9397 5.9400 5.9403 5.9405 5.9406 5.9408 5.9409
0.1 3.5786 3.5792 3.5796 3.5799 3.5801 3.5802 3.5804 3.5805
0.05 2.1750 2.1754 2.1757 2.1760 2.1761 2.1762 2.1763 2.1764
0.01 0.6720 0.6659 0.6610 0.6570 0.6538 0.6513 0.6492 0.6474

132
C
H
A
P
T
E
R

7.
R
E
S
U
L
T
S

Table 7.20: Standard interaction, F = 3. CCSD results are calculated using the obtained HF basis. Energies are listed in Hartrees.
EHF 10 12 14 16 18 20 22 24 26 28 30

1.0 66.9120 66.9114 66.9113 66.9113 66.9113 66.9113 66.9113 66.9113 66.9113 66.9113 66.9113
0.9 61.8662 61.8656 61.8656 61.8656 61.8656 61.8656 61.8656 61.8656 61.8656 61.8656 61.8656
0.8 56.7002 56.6998 56.6998 56.6998 56.6998 56.6998 56.6998 56.6998 56.6998 56.6998 56.6998
0.7 51.3920 51.3918 51.3918 51.3917 51.3917 51.3917 51.3917 51.3917 51.3917 51.3917 51.3917
0.6 45.9115 45.9114 45.9114 45.9114 45.9114 45.9114 45.9114 45.9114 45.9114 45.9114 45.9114
0.5 40.2163 40.2162 40.2161 40.2161 40.2161 40.2161 40.2161 40.2161 40.2161 40.2161 40.2161
0.4 34.2426 34.2418 34.2418 34.2418 34.2418 34.2418 34.2418 34.2418 34.2418 34.2418 34.2418
0.3 27.8861 27.8827 27.8827 27.8827 27.8827 27.8827 27.8827 27.8827 27.8827 27.8827 27.8827
0.28 26.5544 26.5500 26.5500 26.5500 26.5500 26.5500 26.5500 26.5500 26.5500 26.5500 26.5500
0.2 20.9519 20.9399 20.9397 20.9397 20.9397 20.9397 20.9397 20.9397 20.9397 20.9397 20.9397
0.1 12.9699 12.9292 12.9248 12.9247 12.9247 12.9247 12.9247 12.9247 12.9247 12.9247 12.9247
0.05 8.1272 8.0531 8.0336 8.0305 8.0303 8.0303 8.0303 8.0303 8.0303 8.0303
0.01 2.8039 DNC DNC DNC DNC DNC DNC

ECCSD 10 12 14 16 18 20 22 24 26 28 30

1.0 65.8880 65.8484 65.8250 65.8097 65.7989 65.7909 65.7847 65.7798 65.7758 65.7724 65.7697
0.9 60.8576 60.8205 60.7987 60.7845 60.7744 60.7670 60.7612 60.7566 60.7529 60.7499 60.7473
0.8 55.7099 55.6755 55.6555 55.6424 55.6332 55.6263 55.6210 55.6169 55.6135 55.6106 55.6083
0.7 50.4235 50.3923 50.3741 50.3622 50.3539 50.3477 50.3430 50.3392 50.3362 50.3336 50.3315
0.6 44.9697 44.9420 44.9259 44.9154 44.9080 44.9026 44.8984 44.8951 44.8924 44.8902 44.8883
0.5 39.3081 39.2842 39.2703 39.2614 39.2551 39.2504 39.2469 39.2440 39.2418 39.2399 39.2383
0.4 33.3779 33.3581 33.3467 33.3394 33.3343 33.3305 33.3276 33.3254 33.3235 33.3220 33.3207
0.3 27.0806 27.0642 27.0557 27.0502 27.0464 27.0436 27.0414 27.0398 27.0384 27.0373 27.0364
0.28 25.7634 25.7476 25.7396 25.7345 25.7310 25.7284 25.7264 25.7249 25.7236 25.7226 25.7217
0.2 20.2321 20.2164 20.2110 20.2075 20.2051 20.2034 20.2021 20.2011 20.2002 20.1996 20.1990
0.1 12.3887 12.3628 12.3596 12.3583 12.3574 12.3568 12.3563 12.3559 DNC 12.3554 12.3552
0.05 DNC 7.6135 7.6079 7.6074 7.6071 7.6070 7.6069 7.6068 DNC DNC
0.01 DNC

7.6.
T
A
B
L
E
S

133

Table 7.21: Effective interaction, F = 3. CCSD results are calculated using the obtained HF basis. Energies are listed in Hartrees.
EHF 10 12 14 16 18 20 22 24

1.0 66.6596 66.7106 66.7445 66.7686 66.7867 66.8006 66.8118 66.8209
0.9 61.6186 61.6688 61.7021 61.7258 61.7435 61.7572 61.7681 61.7771
0.8 56.4580 56.5073 56.5400 56.5632 56.5805 56.5939 56.6046 56.6133
0.7 51.1558 51.2042 51.2361 51.2587 51.2756 51.2887 51.2991 51.3076
0.6 45.6821 45.7295 45.7606 45.7825 45.7989 45.8116 45.8217 45.8299
0.5 39.9948 40.0409 40.0709 40.0922 40.1080 40.1202 40.1299 40.1379
0.4 34.0304 34.0744 34.1033 34.1237 34.1388 34.1504 34.1597 34.1673
0.3 27.6849 27.7253 27.7528 27.7720 27.7862 27.7972 27.8059 27.8131
0.28 26.3556 26.3950 26.4221 26.4410 26.4551 26.4659 26.4745 26.4815
0.2 20.7635 20.7958 20.8213 20.8390 20.8521 20.8622 20.8701 20.8766
0.1 12.7940 12.8039 12.8243 12.8398 12.8511 12.8597 12.8665 12.8720
0.05 7.9512 7.9374 7.9469 7.9593 7.9692 7.9766 7.9824 7.9870
0.01 2.6952 2.6688 2.6585 DNC DNC DNC DNC DNC

ECCSD 10 12 14 16 18 20 22 24

1.0 65.7552 65.7484 65.7449 65.7430 65.7417 65.7409 65.7403 65.7399
0.9 60.7325 60.7265 60.7235 60.7219 60.7209 60.7202 60.7197 60.7194
0.8 55.5931 55.5880 55.5856 55.5843 55.5835 55.5830 55.5826 55.5823
0.7 50.3158 50.3119 50.3100 50.3091 50.3085 50.3081 50.3079 50.3077
0.6 44.8722 44.8695 44.8682 44.8676 44.8672 44.8670 44.8669 44.8669
0.5 39.2218 39.2203 39.2197 39.2195 39.2194 39.2194 39.2194 39.2194
0.4 33.3043 33.3039 33.3039 33.3041 33.3042 33.3044 33.3046 33.3047
0.3 27.0211 27.0209 27.0216 27.0222 27.0226 27.0230 27.0233 27.0235
0.28 25.7069 25.7066 25.7074 25.7081 25.7085 25.7089 25.7092 25.7095
0.2 20.1881 20.1854 20.1867 20.1877 20.1884 20.1889 20.1893 20.1896
0.1 12.3612 12.3453 12.3462 12.3474 12.3482 12.3488 12.3493 12.3497
0.05 7.6379 7.6045 7.6009 7.6016 7.6024 7.6029 7.6033 7.6036
0.01 DNC DNC DNC

134
C
H
A
P
T
E
R

7.
R
E
S
U
L
T
S

Table 7.22: Standard interaction, F = 4. CCSD results are calculated using the obtained HF basis. Energies are listed in Hartrees.
EHF 10 12 14 16 18 20 22 24 26 28 30

1.0 158.0177 158.0050 158.0043 158.0043 158.0043 158.0043 158.0043 158.0043 158.0043 158.0043 158.0043
0.9 146.3052 146.2858 146.2853 146.2853 146.2853 146.2853 146.2853 146.2853 146.2853 146.2853 146.2853
0.8 134.2944 134.2650 134.2647 134.2647 134.2647 134.2647 134.2647 134.2647 134.2647 134.2647 134.2647
0.7 121.9318 121.8875 121.8874 121.8874 121.8874 121.8874 121.8874 121.8874 121.8874 121.8874 121.8874
0.6 109.1452 109.0790 109.0788 109.0787 109.0787 109.0787 109.0787 109.0787 109.0787 109.0787 109.0787
0.5 95.8333 95.7346 95.7328 95.7327 95.7327 95.7327 95.7327 95.7327 95.7327 95.7327 95.7327
0.4 81.8448 81.6973 81.6903 81.6903 81.6903 81.6903 81.6903 81.6903 81.6903 81.6903 81.6903
0.3 66.9329 66.7128 66.6905 66.6901 66.6901 66.6901 66.6901 66.6901 66.6901 66.6901 66.6901
0.28 63.8056 63.5673 63.5394 63.5388 63.5388 63.5388 63.5388 63.5388 63.5388 63.5388 63.5388
0.2 50.6360 50.3098 50.2455 50.2404 50.2403 50.2403 50.2403 50.2403 50.2403 50.2403 50.2403
0.1 31.8231 31.3597 DNC DNC DNC DNC DNC DNC DNC DNC DNC
0.05 20.3309 19.8207
0.01 7.6477 7.2500

ECCSD 10 12 14 16 18 20 22 24 26 28 30

1.0 156.3659 156.2363 156.1671 156.1243 156.0956 156.0750 156.0594 156.0473 156.0375 156.0296 156.0229
0.9 144.6758 144.5438 144.4783 144.4382 144.4114 144.3921 144.3776 144.3663 144.3572 144.3498 144.3436
0.8 132.6918 132.5544 132.4931 132.4560 132.4312 132.4134 132.4000 132.3896 132.3813 132.3745 132.3688
0.7 120.3619 120.2145 120.1580 120.1241 120.1015 120.0853 120.0732 120.0638 120.0562 120.0501 120.0450
0.6 107.6163 107.4517 107.4006 107.3702 107.3501 107.3357 107.3249 107.3165 107.3099 107.3044 107.2999
0.5 94.3572 94.1641 94.1187 94.0922 94.0747 94.0623 94.0530 94.0458 94.0401 94.0354 94.0315
0.4 80.4391 80.2004 80.1590 80.1368 80.1223 80.1120 80.1044 80.0985 80.0939 80.0901 80.0869
0.3 65.6260 65.3157 65.2712 65.2538 65.2426 65.2348 65.2290 65.2246 65.2210 65.2182 65.2158
0.28 62.5234 62.1948 62.1476 62.1312 62.1207 62.1134 62.1080 62.1038 62.1006 62.0980 62.0958
0.2 49.4774 49.0595 48.9880 48.9741 48.9667 48.9616 48.9579 48.9550 48.9528 48.9510 48.9495
0.1 30.9173 30.3592
0.05 19.6454 19.0378
0.01 DNC DNC

7.6.
T
A
B
L
E
S

135

Table 7.23: Effective interaction, F = 4. CCSD results are calculated using the obtained HF basis. Energies are listed in Hartrees.
EHF 10 12 14 16 18 20 22 24

1.0 157.4356 157.5613 157.6437 157.7002 157.7413 157.7725 157.7971 157.8170
0.9 145.7308 145.8502 145.9316 145.9873 146.0277 146.0584 146.0825 146.1020
0.8 133.7278 133.8383 133.9188 133.9735 134.0131 134.0432 134.0668 134.0858
0.7 121.3727 121.4707 121.5501 121.6037 121.6425 121.6719 121.6950 121.7135
0.6 108.5932 108.6731 108.7512 108.8036 108.8414 108.8700 108.8924 108.9105
0.5 95.2872 95.3407 95.4164 95.4676 95.5043 95.5320 95.5537 95.5711
0.4 81.3018 81.3165 81.3871 81.4369 81.4724 81.4991 81.5199 81.5365
0.3 66.3877 66.3449 66.4031 66.4512 66.4852 66.5106 66.5304 66.5462
0.28 63.2588 63.2016 63.2557 63.3032 63.3369 63.3621 63.3816 63.3972
0.2 50.0767 49.9505 49.9770 50.0203 50.0526 50.0765 50.0949 50.1095
0.1 31.2212 30.9875 DNC DNC DNC DNC DNC DNC
0.05 19.6852 19.4099
0.01 7.0258 6.7813

ECCSD 10 12 14 16 18 20 22 24

1.0 156.0128 155.9868 155.9740 155.9669 155.9627 155.9601 155.9582 155.9569
0.9 144.3378 144.3077 144.2962 144.2900 144.2864 144.2842 144.2826 144.2815
0.8 132.3697 132.3330 132.3230 132.3178 132.3148 132.3130 132.3118 132.3109
0.7 120.0566 120.0091 120.0009 119.9969 119.9946 119.9932 119.9923 119.9917
0.6 107.3285 107.2641 107.2580 107.2550 107.2535 107.2526 107.2520 107.2516
0.5 94.0870 93.9963 93.9921 93.9904 93.9895 93.9891 93.9889 93.9889
0.4 80.1857 80.0545 80.0503 80.0499 80.0499 80.0500 80.0502 80.0504
0.3 65.3859 65.1934 65.1827 65.1836 65.1844 65.1851 65.1857 65.1862
0.28 62.2851 62.0772 62.0634 62.0646 62.0656 62.0664 62.0671 62.0676
0.2 49.2407 48.9599 48.9221 48.9229 48.9246 48.9258 48.9268 48.9276
0.1 30.6514 30.2700
0.05 19.3247 18.9322
0.01 DNC DNC

136
C
H
A
P
T
E
R

7.
R
E
S
U
L
T
S

Table 7.24: Standard interaction, F = 5. Energies are listed in Hartrees.
EHF 10 12 14 16 18 20 22 24 26 28 30

3.0 705.5082 705.2159 705.2141 705.2131 705.2129 705.2129 705.2128 705.2128 705.2128 705.2128 705.2128
2.0 519.8257 519.2706 519.2537 519.2528 519.2527 519.2526 519.2525 519.2525 519.2525 519.2525 519.2525
1.0 313.1707 312.0104 311.8639 311.8603 311.8600 311.8599 311.8599 311.8599 311.8599 311.8599 311.8599
0.9 290.4315 289.1731 288.9904 288.9836 288.9834 288.9834 288.9834 288.9834 288.9834 288.9834 288.9834
0.8 267.0953 265.7286 265.5002 265.4877 265.4876 265.4876 265.4876 265.4876 265.4876 265.4876 265.4876
0.7 243.0553 241.5688 241.2824 241.2602 241.2602 241.2602 241.2602 241.2602 241.2602 241.2602 241.2602
0.6 218.1670 216.5484 216.1879 216.1490 216.1487 216.1487 216.1487 216.1487 216.1487 216.1487 216.1487
0.5 192.2256 190.4624 190.0072 189.9396 189.9376 189.9376 189.9376 189.9376 189.9376 189.9376 189.9376
0.4 164.9234 163.0048 162.4278 162.3113 162.3030 162.3030 162.3030 162.3030 162.3030 162.3030 162.3030
0.3 135.7536 133.6758 132.9437 DNC DNC DNC DNC DNC DNC DNC DNC
0.28 129.6246 127.5162 126.7486
0.2 103.7538 101.5381 100.6147
0.1 66.5178 64.2883 63.1695
0.05 43.4390 41.4092 40.2664

7.6.
T
A
B
L
E
S

137

Table 7.25: Standard interaction, F = 5. Results are calculated using the obtained HF basis. Energies are listed in Hartrees.
ECCSD 10 12 14 16 18 20 22 24 26 28 30

3.0 703.0377 702.3983 702.1784 702.0300 701.9251 701.8483 701.7902 701.7452 701.7094 701.6802 701.6560
2.0 517.4339 516.5264 516.3080 516.1745 516.0827 516.0168 515.9677 515.9300 515.9001 515.8758 515.8556
1.0 311.0017 309.4549 309.1373 309.0300 308.9623 308.9157 308.8818 308.8559 308.8355 308.8190 308.8054
0.9 288.3054 286.6549 286.3044 286.1991 286.1352 286.0915 286.0596 286.0354 286.0164 286.0010 285.9883
0.8 265.0196 263.2551 262.8617 262.7570 262.6973 262.6566 262.6271 262.6047 262.5871 262.5729 262.5612
0.7 241.0391 239.1501 238.7004 238.5935 238.5385 238.5012 238.4742 238.4537 238.4377 238.4247 238.4141
0.6 216.2221 214.1981 213.6744 213.5602 213.5102 213.4765 213.4522 213.4339 213.4196 213.4081 213.3986
0.5 190.3676 188.2003 187.5791 187.4476 187.4023 187.3726 187.3514 187.3355 187.3231 187.3131 187.3050
0.4 163.1735 160.8597 160.1105 159.9433 159.9002 159.8751 159.8574 159.8441 159.8338 159.8255 159.8188
0.3 134.1423 131.6933 130.7786
0.28 128.0461 125.5740 124.6214
0.2 102.3303 99.7955 98.6786
0.1 65.3814 62.9388 61.6347
0.05 DNC DNC DNC

138
C
H
A
P
T
E
R

7.
R
E
S
U
L
T
S

Table 7.26: Effective interaction, F = 5. CCSD results are calculated using the obtained HF basis. Energies are listed in Hartrees.
EHF 10 12 14 16 18 20 22 24

3.0 704.1042 704.1860 704.3890 704.5240 704.6209 704.6938 704.7507 704.7963
2.0 518.4603 518.2977 518.4801 518.6085 518.7002 518.7688 518.8222 518.8650
1.0 311.8164 311.1098 311.1723 311.2896 311.3732 311.4352 311.4831 311.5212
0.9 289.0720 288.2790 288.3098 288.4235 288.5062 288.5673 288.6144 288.6518
0.8 265.7280 264.8399 264.8311 264.9392 265.0209 265.0811 265.1273 265.1640
0.7 241.6767 240.6840 240.6252 240.7244 240.8051 240.8642 240.9095 240.9454
0.6 216.7722 215.6646 215.5427 215.6274 215.7067 215.7647 215.8090 215.8440
0.5 190.8081 189.5752 189.3729 189.4335 189.5104 189.5672 189.6104 189.6445
0.4 163.4743 162.1063 161.8018 161.8220 161.8931 161.9486 161.9906 162.0235
0.3 134.2609 132.7525 132.3184 132.2707 DNC DNC DNC DNC
0.28 128.1216 126.5854 126.1218 126.0557
0.2 102.2044 100.5648 99.9710 DNC
0.1 64.9165 63.2207 62.4520
0.05 40.2934 39.4613

ECCSD 10 12 14 16 18 20 22 24

3.0 701.8751 701.5868 701.5493 701.5173 701.4929 701.4749 701.4617 701.4519
2.0 516.3523 515.8103 515.7623 515.7338 515.7133 515.6990 515.6889 515.6816
1.0 310.0024 308.8848 308.7310 308.7092 308.6969 308.6894 308.6845 308.6810
0.9 287.3106 286.1030 285.9179 285.8955 285.8847 285.8782 285.8739 285.8710
0.8 264.0271 262.7219 262.4967 262.4722 262.4630 262.4575 262.4539 262.4515
0.7 240.0459 238.6354 238.3586 238.3294 238.3219 238.3175 238.3147 238.3128
0.6 215.2235 213.7012 213.3576 213.3187 213.3130 213.3098 213.3078 213.3065
0.5 189.3567 187.7187 187.2890 187.2313 187.2268 187.2248 187.2237 187.2231
0.4 162.1401 160.3881 159.8479 159.7549 159.7490 159.7484 159.7482 159.7483
0.3 133.0709 131.2199 130.5418 130.3827
0.28 126.9647 125.0978 124.3890 124.2111
0.2 101.1987 99.2928 98.4573
0.1 DNC 62.3351 61.3827
0.05 DNC DNC

7.6.
T
A
B
L
E
S

139

Table 7.27: Standard interaction, F = 6. Energies are listed in Hartrees.

EHF 10 12 14 16 18 20 22 24 26 28 30

3.0 1231.3362 1228.7193 1228.5692 1228.5685 1228.5679 1228.5677 1228.5676 1228.5676 1228.5675 1228.5675 1228.5675
2.0 911.9565 908.0358 907.5758 907.5651 907.5641 907.5640 907.5639 907.5638 907.5638 907.5638 907.5638
1.0 555.3932 549.3884 547.9075 547.6913 547.6834 547.6832 547.6831 547.6831 547.6831 547.6831 547.6831
0.9 516.0557 509.7985 508.1282 507.8437 507.8279 507.8278 507.8278 507.8278 507.8278 507.8278 507.8278
0.8 475.6536 469.1422 467.2581 466.8846 466.8542 466.8542 466.8542 466.8542 466.8542 466.8542 466.8542
0.7 433.9925 427.2305 425.1060 424.6166 424.5607 424.5601 424.5601 424.5601 424.5601 424.5601 424.5601
0.6 390.8076 383.8079 381.4147 DNC DNC DNC DNC DNC DNC DNC DNC
0.5 345.7212 338.5124 335.8230
0.4 298.1591 290.7981 287.7903
0.3 247.1651 239.7646 236.4342
0.28 236.4193 229.0335 225.6415
0.2 190.8948 183.6960 180.0920
0.1 124.6446 118.2783 114.6498
0.05 77.5617 74.3017
0.01 DNC DNC

140
C
H
A
P
T
E
R

7.
R
E
S
U
L
T
S

Table 7.28: Standard interaction, F = 6. Results are calculated using the obtained HF basis. Energies are listed in Hartrees.

ECCSD 10 12 14 16 18 20 22 24 26 28 30

3.0 1228.5491 1225.0927 1224.5123 1224.2289 1224.0304 1223.8853 1223.7763 1223.6922 1223.6258 1223.5724 1223.5285
2.0 909.3486 904.5453 903.6297 903.3545 903.1726 903.0440 902.9494 902.8774 902.8213 902.7765 902.7397
1.0 553.1292 546.2805 544.2634 543.7953 543.6410 543.5423 543.4732 543.4222 543.3831 543.3520 543.3267
0.9 513.8444 506.7619 504.5465 504.0063 503.8502 503.7562 503.6909 503.6430 503.6062 503.5770 503.5533
0.8 473.5007 466.1880 463.7516 463.1161 462.9524 462.8637 462.8026 462.7578 462.7236 462.6965 462.6746
0.7 431.9049 424.3723 421.6916 420.9311 420.7491 420.6660 420.6094 420.5682 420.5368 420.5120 420.4919
0.6 388.7941 3 81.0625 378.1152
0.5 343.7933 335.9015 332.6689
0.4 296.3329 288.3507 284.8252
0.3 245.4648 237.5219 233.7218
0.28 234.7483 226.8383 222.9902
0.2 189.3616 181.7231 177.7344
0.1 DNC 116.7086 112.8385
0.05 76.3210 72.9248
0.01

7.6.
T
A
B
L
E
S

141

Table 7.29: Effective interaction, F = 6. Energies are listed in Hartrees.
EHF 10 12 14 16 18 20 22 24

3.0 1228.4662 1226.8409 1227.1277 1227.3873 1227.5658 1227.6968 1227.7974 1227.8769
2.0 909.0297 906.2031 906.2118 906.4563 906.6271 906.7518 906.8468 906.9217
1.0 552.2744 547.5249 546.6254 546.6919 546.8498 546.9657 547.0528 547.1207
0.9 512.9013 507.9176 506.8492 506.8576 507.0086 507.1238 507.2098 507.2768
0.8 472.4586 467.2384 465.9789 465.9114 466.0503 466.1648 466.2499 466.3158
0.7 430.7513 425.2967 423.8217 423.6552 423.7733 423.8867 423.9708 424.0357
0.6 387.5137 381.8347 380.1183 379.8231 DNC DNC DNC DNC
0.5 342.3674 336.4875 334.5036 DNC
0.4 294.7381 288.7055 286.4314
0.3 243.6708 237.5837 235.0093
0.28 232.9101 226.8320 224.1989
0.2 187.3283 181.4041 178.5581
0.1 115.8748 112.9496
0.05 72.5333
0.01

142
C
H
A
P
T
E
R

7.
R
E
S
U
L
T
S

Table 7.30: Effective interaction, F = 6. Results are calculated using the obtained HF basis. Energies are listed in Hartrees.
ECCSD 10 12 14 16 18 20 22 24

3.0 1225.9815 1223.5313 1223.3611 1223.3115 1223.2686 1223.2343 1223.2082 1223.1883
2.0 906.7604 903.0848 902.6089 902.5544 902.5146 902.4852 902.4639 902.4483
1.0 550.4001 544.8789 543.4257 543.1884 543.1548 543.1358 543.1236 543.1155
0.9 511.0861 505.3547 503.7276 503.4261 503.3886 503.3714 503.3606 503.3536
0.8 470.7085 464.7701 462.9498 462.5641 462.5175 462.5025 462.4933 462.4873
0.7 429.0735 422.9369 420.9039 420.4086 420.3435 420.3307 420.3231 420.3183
0.6 385.9173 379.6005 377.3363 376.6996
0.5 340.8642 334.4001 331.8901
0.4 293.3442 286.7924 284.0311
0.3 242.4091 235.8822 232.8853
0.28 231.6781 225.1788 222.1401
0.2 DNC 179.9709 176.8038
0.1 DNC 111.7170
0.05 DNC
0.01

7.6.
T
A
B
L
E
S

143

Table 7.31: Standard interaction, F = 7. Energies are listed in Hartrees.

EHF 10 12 14 16 18 20 22 24 26 28 30

5.0 2930.2027 2910.7234 2908.0220 2907.8927 2907.8912 2907.8906 2907.8903 2907.8902 2907.8902 2907.8901 2907.8901
4.0 2477.3370 2456.4042 2452.8519 2452.5825 2452.5805 2452.5794 2452.5792 2452.5791 2452.5791 2452.5790 2452.5790
3.0 2002.7368 1980.1845 1975.4082 1974.8343 1974.8180 1974.8170 1974.8168 1974.8167 1974.8166 1974.8166 1974.8166
2.5 1754.0613 1730.6595 1725.0645 1724.2140 1724.1696 1724.1690 1724.1687 1724.1686 1724.1685 1724.1685 1724.1685
2.0 1494.7928 1470.5630 1463.9581 1462.6794 1462.5641 1462.5629 1462.5625 1462.5624 1462.5623 1462.5623 1462.5623
1.8 1362.7550 1355.6810 1354.1685 1354.0009 1353.9975 1353.9971 1353.9970 1353.9970 1353.9969 1353.9969
1.6 1252.2857 1244.7002 1242.9055 1242.6620 1242.6534 1242.6531 1242.6530 1242.6529 1242.6529 1242.6529
1.4 1138.6746 1130.5328 1128.3960 1128.0424 1128.0218 1128.0216 1128.0215 1128.0215 1128.0214 1128.0214
1.3 1080.4965 1072.0594 1069.7248 1069.2985 1069.2673 1069.2671 1069.2670 1069.2669 1069.2669 1069.2669
1.2 1021.2709 1012.5274 1009.9745 1009.4602 1009.4136 1009.4132 1009.4130 1009.4130 1009.4130 1009.4130
1.1 960.8731 951.8130 949.0189 948.3983 948.3292 948.3280 948.3279 948.3278 948.3278 948.3278
1.0 899.1507 889.7655 886.7047 885.9553 DNC DNC DNC DNC DNC DNC
0.9 835.9134 826.1973 822.8421 DNC
0.8 770.9184 760.8705 757.1905
0.7 703.8469 693.4743 689.4376
0.6 623.5884 619.1627
0.5 550.6180 545.7742
0.4 473.6663 468.3870
0.3 391.2526 385.5537
0.28 373.9067 368.1320
0.2 300.5487 294.5424
0.1 DNC

144
C
H
A
P
T
E
R

7.
R
E
S
U
L
T
S

Table 7.32: Standard interaction, F = 7. Results are calculated using the obtained HF basis. Energies are listed in Hartrees.

ECCSD 10 12 14 16 18 20 22 24 26 28 30

5.0 2927.2937 2906.4211 2902.8719 2902.2253 2901.8536 2901.5777 2901.3664 2901.2008 2901.0686 2900.9612 2900.8728
4.0 2474.4919 2452.1866 2447.7499 2446.9646 2446.6007 2446.3340 2446.1320 2445.9749 2445.8504 2445.7499 2445.6675
3.0 1999.9767 1976.1035 1970.3971 1969.2990 1968.9324 1968.6786 1968.4892 1968.3438 1968.2297 1968.1384 1968.0640
2.5 1751.3547 1726.6785 1720.1314 1718.7433 1718.3565 1718.1113 1717.9303 1717.7927 1717.6854 1717.6001 1717.5309
2.0 DNC 1466.7153 1459.1448 1457.3034 1456.8544 1456.6190 1456.4486 1456.3207 1456.2221 1456.1442 1456.0813
1.8 1358.9732 1350.9338 1348.8441 1348.3456 1348.1134 1347.9481 1347.8249 1347.7304 1347.6561 1347.5961
1.6 1248.5791 1240.0340 1237.6448 1237.0720 1236.8409 1236.6815 1236.5636 1236.4737 1236.4032 1236.3465
1.4 1135.0548 1125.9668 1123.2160 1122.5322 1122.2966 1122.1440 1122.0322 1121.9475 1121.8814 1121.8283
1.3 1076.9251 1067.5525 1064.5938 1063.8352 1063.5935 1063.4446 1063.3361 1063.2543 1063.1906 1063.1395
1.2 1017.7520 1008.0870 1004.8998 1004.0499 1003.7976 1003.6525 1003.5476 1003.4690 1003.4078 1003.3587
1.1 957.4113 947.4476 944.0098 943.0482 942.7787 942.6373 942.5364 942.4611 942.4026 942.3558
1.0 895.7512 885.4848 881.7727 880.6746
0.9 832.5824 822.0131 818.0014
0.8 767.6626 756.7966 752.4594
0.7 DNC 689.5274 684.8394
0.6 619.7893 614.7280
0.5 546.9927 541.5433
0.4 470.2493 464.4148
0.3 388.0934 381.9173
0.28 370.8073 364.5751
0.2 DNC 291.3593
0.1

7.6.
T
A
B
L
E
S

145

Table 7.33: Effective interaction, F = 7. Energies are listed in Hartrees.
EHF 10 12 14 16 18 20 22 24

5.0 2924.3622 2907.1863 2905.4553 2905.8337 2906.1635 2906.4007 2906.5799 2906.7204
4.0 2471.4336 2452.8813 2450.3427 2450.5860 2450.9092 2451.1403 2451.3147 2451.4510
3.0 1996.7261 1976.6505 1972.9569 1972.9141 1973.2181 1973.4426 1973.6111 1973.7423
2.5 1747.9701 1727.0999 1722.6373 1722.3377 1722.6136 1722.8348 1722.9998 1723.1279
2.0 1466.9527 1461.5444 1460.8497 1461.0596 1461.2766 1461.4377 1461.5623
1.8 1359.1135 1353.2669 1352.3571 1352.5194 1352.7332 1352.8927 1353.0157
1.6 1248.6043 1242.2801 1241.1112 1241.2051 1241.4132 1241.5710 1241.6925
1.4 1134.9422 1128.0986 1126.6162 1126.6113 1126.8080 1126.9643 1127.0841
1.3 1076.7333 1069.6140 1067.9505 1067.8806 1068.0677 1068.2233 1068.3421
1.2 1017.4729 1010.0673 1008.2039 1008.0555 1008.2289 1008.3836 1008.5015
1.1 957.0355 949.3338 947.2497 947.0065 947.1602 947.3136 947.4307
1.0 895.2681 887.2617 884.9337 884.5757 DNC 884.8524 884.9687
0.9 831.9797 823.6623 821.0648 DNC DNC DNC
0.8 758.2958 755.4007
0.7 690.8492 687.6266
0.6 620.8996 617.3182
0.5 547.8485 543.8786
0.4 470.7949 466.4146
0.3 388.2552 383.4666
0.28 366.0162
0.2 292.2890
0.1 186.1034
0.05

146
C
H
A
P
T
E
R

7.
R
E
S
U
L
T
S

Table 7.34: Effective interaction, F = 7. Results are calculated using the obtained HF basis. Energies are listed in Hartrees.

ECCSD 10 12 14 16 18 20 22 24

5.0 2921.7134 2903.2085 2900.6233 2900.4615 2900.3992 2900.3408 2900.2909 2900.2498
4.0 2468.8654 2449.0180 2445.5934 2445.2945 2445.2305 2445.1728 2445.1247 2445.0858
3.0 1994.2639 1972.9619 1968.3464 1967.7491 1967.6723 1967.6164 1967.5713 1967.5359
2.5 DNC 1723.5348 1718.1368 1717.2677 1717.1664 1717.1123 1717.0695 1717.0365
2.0 1463.5481 1457.2036 1455.9139 1455.7494 1455.6970 1455.6573 1455.6276
1.8 1355.7871 1349.0109 1347.4925 1347.2802 1347.2276 1347.1895 1347.1615
1.6 1245.3662 1238.1257 1236.3328 1236.0502 1235.9951 1235.9591 1235.9329
1.4 1131.8049 1124.0672 1121.9446 1121.5585 1121.4957 1121.4621 1121.4382
1.3 1073.6520 1065.6540 1063.3425 1062.8874 1062.8171 1062.7849 1062.7622
1.2 1014.4517 1006.1866 1003.6683 1003.1292 1003.0474 1003.0164 1002.9951
1.1 954.0794 945.5414 942.7970 942.1559 942.0564 942.0267 942.0069
1.0 892.3825 883.5681 880.5768 879.8119 879.6566 879.6386
0.9 DNC 820.0796 816.8198
0.8 754.8382 751.2877
0.7 687.5338 683.6708
0.6 617.7467 613.5518
0.5 544.8834 540.3430
0.4 468.0504 463.1638
0.3 DNC 380.5729
0.28 363.2048
0.2 289.8539
0.1 DNC
0.05

Chapter 8

Conclusions

In this master’s thesis we aimed towards a more flexible and faster coupled-cluster (CC)
code. The main goal was to study the use of alternative methods for matrix-matrix
multiplication, especially accelerated by the use of graphics processing units (GPUs).
Initially a previous C++ code [2, 4] was considered to be extended, but the decision fell
on a complete redesign and rewrite of the program. This decision was taken both in order
to use a different coding style and in order to redesign the parts that were bottlenecks.

Over now three master’s projects, the boundary has been pushed from 20 particles in
110 basis functions [3], first increasing the basis size to up to 420 functions [2], and now
up to 56 particles in 930 basis functions. Most of the speedup acquired here is due to
a simplification of the problem, rewriting all large matrices on a block-diagonal form, in
addition to having accelerated matrix-matrix multiplications. The scaling with respect
to the number of electrons is now drastically improved, to the point that, if including a
Hartree-Fock basis transformation, the execution time is almost solely determined by the
basis size. The current limit is now the memory requirements of up to 100 gigabytes and
not the long run times anymore.

Using GPUs to accelerate matrix-matrix multiplication successfully improves the effi-
ciency by up to four times for large square matrices. Such multiplications are the main
bottleneck, arising from the transformation into a Hartree-Fock basis, which is needed
in order to get converged results. The matrices encountered are, unfortunately, larger
than the available memory on the GPU, and the splitting of matrices into smaller parts,
suitable for GPUs, reduces the speedup to about two times faster than parallel CPU
implementations.

It is, however, possible to put more than one GPU in a single node. Seen from a cost
perspective, the price is about 2000 NOK for each GPU, compared to a much higher price
for buying multiple nodes or nodes with multiple CPUs. The use of such a configuration
was never tested here.

For the coupled-cluster calculation itself, we saw no improvement in efficiency by using
a GPU. This is most likely a consequence of matrices being rectangular and thin, shown
to not perform well with AMD’s library for linear algebra, APPML1. To get the maximal
speedup, it would perhaps be beneficial to utilize both the CPU and the GPU(s) at the

1Accelerated parallel processing math libraries (APPML) is a blas implementation for GPUs manu-
factured by AMD [43].

147

148 CHAPTER 8. CONCLUSIONS

same time to get the optimal distribution of work. This can be hard to do in practice,
but libraries like magma [44] aim to obtain the most out of heterogeneous systems.

Aiming at improving the efficiency of matrix-matrix multiplications even further, we
have also looked at Strassen’s method, a method that reduces the number of operations
needed for matrix-matrix multiplication. This method is, in its simplest form, applied
on two equally-sized quadratic n × n matrices, where n is a power of two. Whereas
the straight forward multiplication uses O(n3) operations, Strassen’s algorithm scales as
O(n2.807), by dividing matrices into smaller parts. It is a recursive method, which in
theory improves efficiency by 12.5% each time it is applied. In practice, however, the
overhead of extracting submatrices uses more time than the multiplications themselves
on fast implementations. The overhead could most likely be reduced, if the method was
implemented more effectively. One possible way to do so could be to store the matrices
as tiles where each submatrix reside in a continuous area of memory. In its current state
Strassen yields no gain, and is used only to prevent GPUs from running out of memory
by splitting matrices into smaller parts.

When it comes to results, we have managed to expand the range of frequencies of the
trapping potential, ω, toward less bound systems, using a step-by-step approach where
the initial guess is now based on a previous calculation. This feature allows us to study
weakly bound quantum dots, in the regime where the energy is dominated by correlations.
We approach a region close to Wigner crystallization, where electrons will eventually form
a crystallized structure in a lattice.

Comparing CC with both full configuration interaction (FCI) and diffusion Monte
Carlo (DMC) we see that such a system is hard to simulate as the error made in the
truncation increases for weak confining potentials. In addition, the use of a single reference
Slater determinant may not be sufficient here. Despite their accuracy, both FCI and DMC
on the other hand scales poorly with respect to the system size. The time consumption
for DMC, however, can be improved, as Monte-Carlo methods see good speedups with
GPU computing [45, 40]. Monte-Carlo methods can generally work in parallel without
significant communication or data transfer among work-items, unlike CC.

Although our step-by-step technique opens up a new area of convergence, it is not
sufficient for larger systems. We are for instance not able to break the barrier of ω = 1.0
for 56 particles.

We are well satisfied with the work done on implementing the coupled cluster equations.
To the best of our knowledge, coupled-cluster calculations using GPU programming have
not been studied before in the case of quantum dots. We therefore hope that further
studies in the direction of efficient CC on GPUs are conducted, in particular on the use
of multiple GPUs on multiple nodes. Further work could also include triples, leading to
either perturbative triples correction, CCSD(T), or full inclusion of triples, CCSDT.

From the more physical point of view, it is of great interest to study more difficult
systems such as a double-well quantum dot, along the lines of Wang’s studies [4]. In
our opinion it should not be hard to extend the library developed here to include such
a system. A reduction in the execution time used for simulations of a double dot would

149

then most likely be seen as well, if the symmetries of the new Hamiltonian are successfully
described in the ‘Basis’ class.

Another interesting topic to investigate is simulating the time-dependent Schrödinger
equation. A time-dependent coupled-cluster framework is already tried to some extent.
See for example [46]. If possible, and one includes a variable magnetic field in the cal-
culations, one could simulate spin-flipping and other phenomena. Such simulations have
not been done, and would probably require a rethinking of the approach.

Bibliography

[1] I. Shavitt and R. J. Bartlett, Many-body methods in chemistry and physics: MBPT
and coupled-cluster theory, ser. Cambridge molecular science series. Cambridge
University Press, 2009.

[2] M. H. Jørgensen, “Many-body approaches to quantum dots,” Master’s thesis,
University of Oslo, 2011. [Online]. Available: http://urn.nb.no/URN:NBN:no-28880

[3] M. P. Lohne, “Coupled-cluster studies of quantum dots,” Master’s thesis, University
of Oslo, 2010. [Online]. Available: http://urn.nb.no/URN:NBN:no-26102

[4] Y. M. Wang, “Coupled-cluster studies of double quantum dots,” Master’s thesis,
University of Oslo, 2011. [Online]. Available: http://urn.nb.no/URN:NBN:no-28527

[5] A. E. DePrince and J. R. Hammond, “Coupled cluster theory on graphics processing
units i. the coupled cluster doubles method,” J. Chem. Theory Comput., vol. 7 (5),
pp. 1287–1295, 2011.

[6] C. Hirth. toffyrn::scotch. [Online]. Available: https://orion.toffyrn.net/trac/physics/
wiki/scotch

[7] D. Griffiths, Introduction to Quantum Mechanics, 2nd ed. Pearson, 2005.

[8] P. A. M. Dirac, “A new notation for quantum mechanics,” Math. Proc. Cambridge,
vol. 35, pp. 416–418, 1939.

[9] J. C. Slater, “The theory of complex spectra,” Phys. Rev., vol. 34, pp. 1293–1322,
Nov 1929.

[10] W. Pauli, “Über den zusammenhang des abschlusses der elektronengruppen im atom
mit der komplexstruktur der spektren,” Z. Phys. A-Hadron. Nuc., vol. 31, pp. 765–
783, 1925.

[11] Nobel Lectures in Physics: 1942-1962. World Scientific Publishing, 1998, vol. 3.

[12] SymPy Development Team, SymPy: Python library for symbolic mathematics, 2010.
[Online]. Available: http://www.sympy.org

[13] G.-C. Wick, “The evaluation of the collision matrix,” Phys. Rev., vol. 80, pp. 268–
272, 1950.

[14] R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics,” Rev.
Mod. Phys., vol. 20, pp. 367–387, 1948.

151

http://urn.nb.no/URN:NBN:no-28880
http://urn.nb.no/URN:NBN:no-26102
http://urn.nb.no/URN:NBN:no-28527
https://orion.toffyrn.net/trac/physics/wiki/scotch
https://orion.toffyrn.net/trac/physics/wiki/scotch
http://www.sympy.org

152 BIBLIOGRAPHY

[15] ——, “Space-time approach to quantum electrodynamics,” Phys. Rev., vol. 76, pp.
769–789, 1949.

[16] S. M. Reimann and M. Manninen, “Electronic structure of quantum dots,” Rev. Mod.
Phys., vol. 74, pp. 1283–1342, 2002.

[17] D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys.
Rev. A, vol. 57, pp. 120–126, 1998.

[18] S. Jenks and R. Gilmore, “Quantum dot solar cell: Materials that produce two
intermediate bands,” J. Ren. Sust. Energy Rev., vol. 2, p. 013111, 2010.

[19] D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 micrometer
room-temperature gaas-based quantum-dot laser,” Appl. Phys. Lett., vol. 73, p. 2564,
1998.

[20] E. T. Ben-Ari, “Nanoscale quantum dots hold promise for cancer applications,” J.
Natl. Cancer Inst., vol. 95, pp. 502–504, 2003.

[21] M. Koskinen, M. Manninen, and S. M. Reimann, “Hund’s rules and spin density
waves in quantum dots,” Phys. Rev. Lett., vol. 79, pp. 1389–1392, 1997.

[22] G. Hagen, T. Papenbrock, D. J. Dean, and M. Hjorth-Jensen, “Ab initio coupled-
cluster approach to nuclear structure with modern nucleon-nucleon interactions,”
Phys. Rev. C, vol. 82, p. 034330, 2010.

[23] F. Coester, “Bound states of a many-particle system,” Nuc. Phys., vol. 7, pp. 421 –
424, 1958.

[24] F. Coester and H. Kümmel, “Short-range correlations in nuclear wave functions,”
Nuc. Phys., vol. 17, pp. 477 – 485, 1960.

[25] J. Č́ıžek, “On the correlation problem in atomic and molecular systems. calculation
of wavefunction components in ursell-type expansion using quantum-field theoretical
methods,” J. Chem. Phys., vol. 45, pp. 4256–4266, 1966.

[26] T. D. Crawford and H. F. Schaefer, An Introduction to Coupled Cluster Theory for
Computational Chemists. John Wiley & Sons, Inc., 2007, pp. 33–136.

[27] (2011, June) Radeon HD 6970 specifications. Advanced Micro Devices,
Inc. [Online]. Available: ”http://www.amd.com/us/products/desktop/graphics/
amd-radeon-hd-6000/hd-6970/”

[28] Microsoft, Programming Guide for Direct3D 11, Microsoft Std. [Online].
Available: http://msdn.microsoft.com/en-us/library/windows/desktop/ff476345(v=
vs.85).aspx

[29] NVIDIA, NVIDIA CUDA C Programming Guide, NVIDIA Std. Ver-
sion 4.2, 4 2012. [Online]. Available: http://developer.nvidia.com/
nvidia-gpu-computing-documentation

"http://www.amd.com/us/products/desktop/graphics/amd-radeon-hd-6000/hd-6970/"
"http://www.amd.com/us/products/desktop/graphics/amd-radeon-hd-6000/hd-6970/"
http://msdn.microsoft.com/en-us/library/windows/desktop/ff476345(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff476345(v=vs.85).aspx
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/nvidia-gpu-computing-documentation

BIBLIOGRAPHY 153

[30] Khronos OpenCL Working Group, OpenCL Specification, Khronos Group Std. Ver-
sion 1.1, Rev. 36.

[31] V. Strassen, “Gaussian elimination is not optimal,” Numer. Math., vol. 13, pp. 354–
356, 1969.

[32] [Online]. Available: http://www.netlib.org/blas/

[33] K. Goto and R. Van De Geijn, “High-performance implementation of the level-3
blas,” ACM Trans. Math. Softw., vol. 35, pp. 4:1–4:14, 2008.

[34] N. J. Higham, “Exploiting fast matrix multiplication within the level 3 blas,” ACM
Trans. Math. Softw., vol. 16, pp. 352–368, 1990.

[35] M. Taut, “Two electrons in a homogeneous magnetic field: particular analytical
solutions,” J. Phys. A-Math. Gen., vol. 27, pp. 1045–1055, 1994.

[36] M. Pedersen Lohne, G. Hagen, M. Hjorth-Jensen, S. Kvaal, and F. Pederiva, “Ab
initio computation of the energies of circular quantum dots,” Phys. Rev. B, vol. 84,
p. 115302, 2011.

[37] S. Kvaal, “Open source fci code for quantum dots and effective interactions,” 2008,
arXiv:0810.2644v1.

[38] Blitz++ library. [Online]. Available: http://sourceforge.net/projects/blitz/

[39] C. Sanderson, “Armadillo: An open source c++ linear algebra library for fast pro-
totyping and computationally intensive experiments,” NICTA, Tech. Rep., 2010.

[40] C. Hirth. toffyrn::qvmc. [Online]. Available: https://orion.toffyrn.net/trac/physics/
wiki/qvmc

[41] S. Kvaal, “Harmonic oscillator eigenfunction expansions, quantum dots, and effective
interactions,” Phys. Rev. B, vol. 80, p. 045321, 2009.

[42] N. Shimizu, Y. Utsuno, T. Mizusaki, M. Honma, Y. Tsunoda, and T. Otsuka, “Vari-
ational procedure for nuclear shell-model calculations and energy-variance extrapo-
lation,” Phys. Rev. C, vol. 85, p. 054301, 2012.

[43] AMD APPML. [Online]. Available: http://developer.amd.com/LIBRARIES/
APPMATHLIBS/Pages/default.aspx

[44] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear algebra for hybrid
gpu accelerated manycore systems,” University of Tennessee Computer Science, Tech.
Rep., October 2008.

[45] I. U. Nikolaisen, “Bose-einstein condensation in trapped bosons: A quantum monte
carlo analysis using opencl and gpu programming,” Master’s thesis, University of
Oslo, 2011. [Online]. Available: http://urn.nb.no/URN:NBN:no-28831

[46] S. Kvaal, “Ab initio quantum dynamics using coupled-cluster,” J. Chem. Phys., vol.
136, no. 19, p. 194109, 2012.

http://www.netlib.org/blas/
http://sourceforge.net/projects/blitz/
https://orion.toffyrn.net/trac/physics/wiki/qvmc
https://orion.toffyrn.net/trac/physics/wiki/qvmc
http://developer.amd.com/LIBRARIES/APPMATHLIBS/Pages/default.aspx
http://developer.amd.com/LIBRARIES/APPMATHLIBS/Pages/default.aspx
http://urn.nb.no/URN:NBN:no-28831

	Preface
	Introduction
	I Theory
	Quantum mechanics
	Fundamentals
	The wave function
	Observables
	The canonical commutation relation
	Eigenfunctions
	Bra-ket notation
	A fundamental summary

	Harmonic oscillator
	The ladder operators
	Two dimensions

	Many-body theory
	The non-interacting case
	Indistinguishable and identical particles
	Second quantization
	Operators
	Wick's theorem

	Diagrams
	Normal-ordered Hamiltonian

	Systems
	Quantum dots
	The Schrödinger equation in spherical coordinates

	Implementation
	Symmetries in the Hamiltonian
	Reading elements from file

	Other systems

	Coupled-cluster theory
	The exponential ansatz
	Derivation of the CCSD-equations
	Diagrammatic rules
	The energy equations
	The 1 equations
	The 2 equations

	Implementing CCSD
	Hartree-Fock method
	Implementing Hartree-Fock

	OpenCL
	General-purpose computing on GPU
	The OpenCL model
	Platform model
	Execution model
	Memory model
	Programming model

	Matrix-matrix multiplication
	Strassen's algorithm

	Implementation
	Strassen
	CLgemm
	CLstrassen

	II Results
	Results
	Code validation
	Simple tests with non-interacting systems
	Effective interaction
	Earlier results

	Efficiency
	Optimized matrix-matrix multiplication
	Other implementations

	Convergence analysis
	Lowering the frequency
	Comparison with other methods
	Monte-Carlo methods
	Full configuration interaction

	Tables

	Conclusions
	Bibliography

