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A B S T R A C T 

We consider the behaviour of Alfv ́en waves propagating in a medium with random density perturbations. The imposed density 

perturbations have a broad-band spectrum and their characteristic spatial scale may be defined according to the peak in the 
spectrum. The interaction of the boundary driven Alfv ́en waves with the medium generates reflections most efficiently when 

their wavelength is comparable to the spatial scale of the density perturbations. For our monotonic driver, this leads to the 
generation of quasi-periodic oscillations. The periods of oscillation of the propagating Alfv ́en waves is no longer only associated 

with the driver. Additional periodicities may be associated with one or more characteristic spatial scales in the density profile, 
or with beating between other spectral components. Multiple wave reflections cause oscillatory power to be retained at low 

altitudes, increasing opportunities to contribute to heating at those locations. 

Key words: MHD – Sun: atmosphere – Sun: corona – Sun: oscillations. 
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 I N T RO D U C T I O N  

bserv ations have re vealed that magnetohydrodynamic (MHD) 
aves are ubiquitous in the solar atmosphere. Propagating transverse 
a ves ha ve been detected in the chromosphere using Hinode (De
ontieu et al. 2007 ; Okamoto et al. 2007 ), and in the corona using the
oronal Multi-channel Polarimeter (CoMP; Tomczyk et al. 2007 ). 
uch waves attract attention both as a diagnostic technique (e.g. 
akariakov et al. 2021 ; Anfinogentov et al. 2022 ) and as a potential

ource of coronal heating (e.g. Van Doorsselaere et al. 2020 ) and solar
ind acceleration (e.g. van Ballegooijen & Asgari-Targhi 2016 ). 
In closed structures such as coronal loops, waves are efficiently 

rapped and periodic transverse displacements have been interpreted 
s kink oscillations (e.g. Nakariakov et al. 2021 ). Their damping and
issipation through processes of resonant absorption (e.g. Ionson 
978 ), phase mixing (Heyvaerts & Priest 1983 ), and the Kelvin–
elmholtz instability (KHI; e.g. Terradas et al. 2008b ) have been 

tudied in detail. The damping rate of large amplitude kink oscilla- 
ions, impulsiv ely e xcited by flares or CMEs, is frequently used for
oronal seismology as a diagnostic for the properties of the particular 
lasma structure. Decayless oscillations are also observed to be 
biquitous in coronal loops (Anfinogento v, Nakariako v & Nistic ̀o 
015 ), suggesting a continuous source of wave energy, such as
hotospheric motions. The ubiquitous propagating waves observed 
n the corona (e.g. Tomczyk et al. 2007 ) may also be associated
ith the same energy source as ubiquitous decayless oscillations, 

uch as random footpoint motions (Afanasyev, Van Doorsselaere & 

akariakov 2020 ). 
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Fast and Alfv ́en waves driven by azimuthal footpoint motions have
een investigated for periodic (De Groof, Paes & Goossens 2002 )
nd random (De Groof & Goossens 2002 ) driv ers. Wav e heating
f coronal loops due to azimuthally polarized footpoint motions 
as been studied by Berghmans & Tirry ( 1997 ) for dissipative
HD and by Tirry & Berghmans ( 1997 ) for ideal MHD. Radially

olarized footpoint motions were considered for an ideal slab model 
y Tirry, Berghmans & Goossens ( 1997 ) and De Groof & Goossens
 2000 ). 

Waves are also frequently observed in open coronal structures (e.g. 
e vie w by Banerjee et al. 2021 ). Furthermore, coronal heating is not
onfined to closed structures. The potential for propagating waves to 
ccount for, or contribute to, heating in open structures is based on
he wave energy present in such waves, and the opportunity for that
nergy to be dissipated at the appropriate locations. For Alfv ́en waves
n open structures, turbulence is often invoked to provide efficient 
issipation of the wave energy (e.g. Cranmer & van Ballegooijen 
005 ; van Ballegooijen et al. 2011 ; Asgari-Targhi et al. 2021 ). 
Mura wski, Nakariako v & Pelino vsk y ( 2001a ) considered the

ropagation of fast MHD waves in a randomly structured medium in
he context of global EIT waves. This scenario was also considered by 
uan et al. ( 2015 ), who studied the case of short (Gaussian) fast MHD
ulses propagating in a random medium. The interaction of the wave
ith the medium causes the generation of quasi-periodic waves (e.g. 
akariako v, P ascoe & Arber 2005 ) and the attenuation of the initial
ulse. The effect of random structuring has also been considered for
coustic waves, where space-dependent random profiles again cause 
ttenuation (Medrek et al. 2002 ), though time-dependent random 

elds can cause wave amplification for structuring is in density 
Murawski, Nocera & M ̌edrek 2001b ; Nocera, Medrek & Murawski
001 ) or velocity profiles (Murawski & Medrek 2003a ; Murawski
004 ). 
is is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Figure 1. Example of random density profile with λs = 50 Mm. The top panels show the profiles of the plasma density and Alfv ́en speed. The bottom left panel 
sho ws the arri v al delay for a propagating wave in comparison to a uniform medium, given by equation ( 1 ). The bottom right panel shows the Fourier power 
spectrum of the structured medium (red line is the same spectrum with Tukey smoothing). The vertical dashed line corresponds to k s = 2 π / λs and the green line 
represents the source power spectrum. 
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In this paper, we consider the propagation of transverse MHD
aves through a plasma with random density perturbations which
ave a characteristic spatial scale that can be varied. We consider
ropagation in open coronal structures for which the direction of
ave propagation is aligned with the magnetic field, rather than
erpendicular as in Murawski et al. ( 2001a ) and Yuan et al. ( 2015 ),
lthough we can expect similar results for low amplitude waves that
re described by the same linear wave equation. We examine the
resence of longitudinal structuring of the plasma density, i.e. the
ariation of the Alfv ́en speed in the direction of wave propagation.
o isolate the effect of longitudinal structuring we do not consider the
resence of transverse structuring, which can have a significant effect
n the dissipation of wave energy and for which the characteristic
patial scale may be determined independently of longitudinal
tructuring, and so we e xclude dissipativ e effects generally. This
aper is organized as follows. We describe our model in Section 2
nd present the results of our parametric study in Section 3 . Our focus
s on the trapping of wave energy and the generation of additional
eriodicities due to the presence of the random perturbations. Further
iscussion is presented in Section 4 , with conclusions in Section 5 . 

 M O D E L  

e perform a parametric study to investigate the behaviour of Alfv ́en
aves propagating in a medium with random density perturbations.
he period of our monotonic boundary driver is P d = 60 s and so for
n average Alfv ́en speed of 1 Mm s −1 , the wavelength of the driven
lfv ́en wave is λd = 60 Mm. A key parameter of our model is the

haracteristic spatial scale of the density perturbations λs . 
NRAS 516, 2181–2188 (2022) 
In Yuan et al. ( 2015 ), the randomly structured medium is generated
y a method based on summing sinusoidal perturbations. The
inusoidal perturbations correspond to the spatial harmonics of the
umerical domain and increasing the number of harmonics leads to
horter spatial scales being introduced. The correlation length that
haracterizes the random medium is then defined as the full width at
alf-maximum of the autocorrelation coefficient of the density pro-
le. In this paper, we generate our random density profiles by using

he desired power spectrum to define the weighting of random Fourier
omponents. The profile of the random perturbations is then obtained
s the inverse Fourier transform. This method is described in Timmer
 Koenig ( 1995 ) for the case of a time-series with a power-law

pectrum. In our case, the proposed power spectrum is based on a beta
istribution and is qualitatively similar to a Gaussian distribution but
efined on a finite interval. This method allows us to define the desired
haracteristic scale of the density perturbations directly, rather than
onstructing a random profile and calculating the corresponding scale
fterwards. 

Fig. 1 shows an example of a random density profile used in
ur simulations with λs = 50 Mm. The top left panel shows the
ensity (in normalized units) with the corresponding Alfv ́en speed
n the top right panel. For all simulations, the standard deviation
f the amplitude of the random perturbations is 20 per cent of
he background value. For convenience, we also impose that the
erturbations tend to zero at the boundary of the region of interest
i.e. ρ = 1 at x = 0 and x = 1000 Mm). The bottom left panel shows the
elay to a wave that propagates at the local Alfv ́en speed. The delay is
alculated as the arri v al time in the structured medium in comparison
o a uniform medium with C A = 1 Mm s −1 . For propagation at the

art/stac2294_f1.eps
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Figure 2. Example of Alfv ́en wave velocity time-series (top left). The top right panel shows the Alfv ́en wave amplitude integrated in time. The dashed line is 
the theoretical value for a uniform medium that increases until the end of the driving phase (vertical dotted line). The dotted curve is the difference between the 
actual integrated amplitude and that for the uniform medium. The bottom panels show the spatial variation of the wave amplitude, calculated by integrating its 
absolute value for times during (left) and after (right) the driving phase. The horizontal dashed line corresponds to the value in a uniform medium. 
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ocal Alfv ́en speed C A ( x ) the arri v al time at a distance d is 

( d) = 

∫ d 

0 

1 

C A ( x) 
dx. (1) 

he delay for a particular position is determined by the preceding 
andom structures but is al w ays ne gativ e, implying wav e acceleration
ompared with a uniform medium, by the end of the profile where
he density perturbations average to zero but there is a net increase
n the a verage wa ve speed (e.g. Murawski & Medrek 2003b ).
he bottom right panel shows the Fourier power spectrum of the 
tructured medium (red line is the same spectrum with Tukey 
moothing). The vertical dashed line corresponds to k s = 2 π / λs .
t is evident from the spectrum that the peak corresponds to the
roposed characteristic spatial scale but is also sufficiently broad 
hat the density profile does not simply appear as a sinusoidal
scillation. 
We perform simulations using LARE2D (Arber et al. 2001 ) that 

olves the 2.5D non-linear visco-resistive MHD equations. In this 
tudy, our choice of equilibrium and driver corresponds to a 1D 

roblem of propagating Alfv ́en waves. The magnetic field is constant 
nd in the x -direction. The particular density profile is set to be in
quilibrium by varying the temperature to satisfy the condition of 
otal pressure balance (with a plasma β = 0.1). We drive transverse
aves at the lower boundary ( x = 0) with the z component of the
elocity, using 

 z = A 0 sin ( ωt) , (2) 

here A 0 is the wave amplitude, and ω = 2 π / P d is the frequency.
his injects Alfv ́en waves into the domain. The y and z directions
re both invariant throughout the simulations ( ∂ / ∂ z ≡ 0 in LARE2D ,
nd our model further imposes ∂ / ∂ y ≡ 0). The amplitude of the
river A 0 = 0.001 Mm s −1 is chosen to be sufficiently small to
pproximate the linear regime and a v oid the non-linear genera-
ion of density perturbations. The driver is applied for 3000 s
hich corresponds to 50 cycles. Our use of this extended driving

ime means we have a well-defined period associated with the 
riv en Alfv ́en wav e. In comparison, a short pulse such as that
sed in Yuan et al. ( 2015 ) corresponds to a broad-band spectrum.
his well defined and constant period assists our analysis of 
dditional periodicities generated by the random structuring (see 
ection 3.2 ). 
An open upper boundary is simulated using an extended damping 

ayer. The region of interest that contains random density perturba- 
ions is x = [0, 1000] Mm, while the full numerical domain extends
o 3000 Mm. Outside the region of interest, velocity perturbations 
re artificially damped to ensure there are no reflections from the
pper boundary. The domain is simulated using 30 000 grid points
nd an end time of 20 000 s. We note that our choice of normalization
s arbitrary and corresponds to typical spatial and temporal scales for

HD waves in the solar corona. 

 RESULTS  

ur study is comprised of numerous numerical simulations with 
if ferent v alues of structuring wavelength λs and dif ferent v alues
f the seed used in the pseudo-random number generator for the
ensity profile perturbations. We focus on analysing two effects in 
his section; the retention of wave energy by the random structuring,
nd the period(s) of oscillation of the Alfv ́en waves. 
MNRAS 516, 2181–2188 (2022) 
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Figure 3. Collation of results for simulations with different random seeds. The simulations are summarized by the integrated wave amplitude after the driving 
phase compared to the initial input by the driver. 
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.1 Trapping of wave energy 

or each of our numerical simulations, we use 100 spatial probes
niformly distributed throughout the region of interest to examine the
a ve beha viour. The probes feature of LARE2D allo ws ef ficient output
f plasma parameters with maximal temporal resolution i.e. we only
utput at 100 locations in the x -direction rather than the full numerical
esolution of 30 000 grid points. The plasma parameters at the probe
ocations are output at every internal time-step (as determined in
ccordance with the CFL condition) that is typically far higher than
e require in this study and so the data are resampled by interpolating

o a fixed interval of 1 s before further analysis. 
To examine the behaviour of Alfv ́en waves, we focus on the time-

eries for the transverse plasma velocity v z . An example of the output
rom an individual probe, located 200 Mm from the driven boundary,
s shown in the top left panel of Fig. 2 . The full time-series has
 duration of 20 000 s but is truncated here for clarity. The two
ertical dashed lines correspond to the arri v al times of the start and
nd of the driven oscillation (at this height), given by equation ( 1 ).
or this particular simulation, weak reflections are generated by the
andom density structuring and so the driven oscillation is readily
istinguished from the later oscillations generated by reflections by
he significant decrease in amplitude. This particular probe is located
ear a local minimum in the density profile and so during the driven
hase the amplitude is typically higher than the driver amplitude ( A 0 

 0.001 Mm s −1 ). 
The top right panel of Fig. 2 shows the absolute value of the Alfv ́en

ave amplitude integrated in time, 

 ( t) = 

∫ t 

0 
| v z | d t, (3) 

ith the difference that arises due to the effect of reflections
enoted by the dotted line. For this particular case, the difference is
l w ays positi ve. Ho we ver, for scenarios in which there is destructive
nterference between the driven and reflected waves the difference
ay be ne gativ e for early times. 
We can estimate the typical amplitude during the driven phase by

ntegrating the absolute value of v z in time for each spatial probe, as
hown in the bottom left panel of Fig. 2 . The horizontal dashed line
orresponds to the expected value for a uniform medium based on
he driver amplitude and frequency. The bottom right panel of Fig. 2
hows the same estimated amplitude after the driven phase (for which
he expected value for a uniform medium would be zero). Unlike the
revious panel, the reflected amplitude is typically larger for probes
ocated closer to the driven boundary due to the greater opportunities
or reflected waves to contribute to the time-series there. The value
NRAS 516, 2181–2188 (2022) 
or consecutive probes can vary according to the particular details of
ave interference. 
To capture the behaviour of an individual simulation we consider

he mean value of this integrated wave amplitude remaining after the
riving phase. The result is presented as a ratio where the integrated
ave amplitude is normalized by the value corresponding to the
river. Hence, a ratio of 1 implies the reflections have ef fecti vely
oubled the lifetime of the wave within the region of interest. 
Fig. 3 shows the results collated for 10 numerical simulations,

ach with the same nominal value of λs = 50 Mm but with a
ifferent seed for the pseudo-random number generator. Owing to
he details of the particular random sequence, the actual peak(s) in
he generated density profile spectrum may differ slightly from the
ominal value requested by the user. We find that the details of the
andom structuring can have a significant effect on the efficiency
f the reflections. The left-hand panel of Fig. 3 shows the results
rouped by simulation; for each of the 10 different random seeds
he plotted amplitude ratio represents the mean value calculated o v er
ll 100 probes, and the error bars correspond to the first and third
uartiles. We note that the labelling of the 10 simulations i = [1,
0] is arbitrary. The right-hand panel is a histogram of the same
ata representing the mean value for each of the 1000 probes (10
imulations each with 100 probes). The histogram exhibits a peak
alue ≈0.5 with a long tail, most of which can be attributed to one
articular simulation ( i = 6 in Fig. 3 ) in this case. Whether the peak
alue or the tail is most important or representative for scenarios
ele v ant to coronal heating remains an open question, though we
ote that such extreme cases of wave trapping may arise due to our
se of a monochromatic driver whereas a more realistic driver is
nlikely to be so stable (see further discussion in Section 4 ). 
Fig. 4 shows the summary of results for different values of the

ominal structuring scale λs . The solid line represents the mean
alue of the amplitude ratio, while the lower and upper dashed
ines represent the first and third quartiles, respectively. The peak
n each curve occurs at λs = 30 Mm which is related to our choice of
riving period P d = 60 s. For this driving period, this represents the
patial scale most likely to generate efficient reflections, although as
reviously noted this is the nominal spatial scale requested by the user
i.e. not accounting for random variations). This result is consistent
ith that found for a short pulse by Yuan et al. ( 2015 ) for which

eflection was found to be most efficient when the correlation length
as half of the initial pulse width. For small values of λs (compared

o the wavelength of the driven wave), the random structuring appears
s fine structuring that MHD waves are typically insensitive to (e.g.
 ascoe, Nakariako v & Arber 2007 ; Terradas et al. 2008a ). At the

art/stac2294_f3.eps
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Figure 4. Dependence of the wave amplitude ratio on the nominal structuring 
spatial scale λs . The solid line represents the mean value of the amplitude ratio, 
while the lower and upper dashed lines represent the first and third quartiles. 
The lower and upper dotted lines represent the minimal and maximal values. 
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ther extreme of very large λs , the structuring corresponds to a slowly
arying medium, lacking strong gradients in the Alfv ́en speed that 
romote reflections. 

.2 Generation of periodicities 

s described in Section 2 , we generate our random structure based
n a proposed spatial scale λs , with a corresponding wavenumber k s 
 2 π / λs . We can consider a periodicity associated with this spatial

cale of P s = 2 λs / C A . As shown in the example in Fig. 1 , the density
rofile spectrum is typically broad (to a v oid ha ving a monochromatic
pectrum corresponding to sinusoidal perturbations). In other cases, 
epending on the particular details of the random density pertur- 
ations, the spectrum may feature multiple strong peaks distributed 
igure 5. Examples of velocity profiles (top) taken during the driving phase of the 
bottom) are shown by the black curves. The red curves represent the periodicity as
ominal structuring spatial scale λs . The dashed and dot–dashed lines correspond t
round the nominal wavenumber k s . More generally, we can consider
 range of periodicities associated with the spectrum of the random
tructuring. 

In this section, we present several different cases of additional 
eriodicities generated by the interaction of the Alfv ́en waves with
he random density structuring. 

At times during the driving phase of the simulation, the oscillations
etected at each probe location are dominated by the period of the
riv er. An e xample of a time-series (top-left panel) and corresponding 
ower spectrum (bottom-left panel) is shown in Fig. 5 for a probe
t x = 200 Mm in a simulation with λs = 100 Mm. For this large
tructuring scale, the period associated with the random structuring 
red curve) is distinct from that of the driver (vertical dashed line),
lthough the interaction is weak and so the wave amplitudes are small
see also Fig. 4 ). The blue vertical dot–dashed line corresponds to
he beating frequency i.e. the average of the frequencies of the driver
nd that associated with the structure. The top right panel of Fig. 5
hows the signal at the same probe, starting after the driven waves
nd their immediate reflections have passed (taken to be twice the
ime for the directly driven waves to have passed). Fig. 6 shows
his later velocity power spectrum calculated for each of the 100
imulation probe locations. Each spectrum is normalized to its own 
aximum to remo v e the variation in amplitude between probes (see

.g. the variation in the bottom right panel of Fig. 2 ). The spectra
emonstrate that the period of oscillation which is associated with 
he random perturbations is consistent for different locations. 

In the example above, the spectrum of the density profile pertur-
ations was well approximated as a single, broad peak. The example
n Fig. 7 shows a scenario for which the spectrum associated with
he random density perturbations has two peaks (corresponding to 
patial scales either side of the nominal value λs = 50 Mm). In this
MNRAS 516, 2181–2188 (2022) 

simulation (left) and at a later time (right). The corresponding power spectra 
sociated, with the random structure with the dotted line corresponding to the 
o the driver and beating frequencies, respectively. 
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Figure 6. Velocity power spectra calculated for each probe location. The 
horizontal dashed line corresponds to the period of the driver. The spectrum 

for each probe is normalized to its maximum to remo v e the variation in 
amplitude between probes. 

Figure 7. Example of a density profile that features two dominant spectral 
components (top panel). The middle panel shows an example velocity profile, 
with the corresponding spectrum shown by the black curve in the bottom 

panel. The red curve shows the spectral profile associated with the density 
perturbations. 
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NRAS 516, 2181–2188 (2022) 
ase, the lower λs (in comparison to the previous example of λs =
00 Mm) is more fa v ourable for interaction with the driven waves,
.e. closer to the peak value of 30 Mm, and so the reflected wave
nergy is significantly larger. A strong peak in the power spectrum
orresponding to the reflected driv en wav es persists long after the
irectly driven wa ves ha ve passed. There is a second strong peak in
he velocity power spectrum of f ≈ 0.0125 Hz which is associated
ith a particular spatial scale present in the plasma density profile. We
ote that this is not the dominant spectral component of the density
rofile, but is instead the one which is most similar to the frequency
f the driver. There is also a peak in the velocity power spectrum
orresponding to the other density profile periodicity although its
mplitude is negligible. 

These results suggest possible seismological applications to inves-
igate the plasma properties of open magnetic structures by demon-
trating that the periodicities present in the system are determined
y the longitudinal structuring in addition to the initial wave source.
o we ver, it is evident that caution is required in interpreting the
etected periodicities since the previous two examples demonstrate
hat periodicities may be due to se veral dif ferent factors: they may
e associated with the footpoint driv er; the y may correspond to a
haracteristic scale present in the medium (though not necessarily
he dominant one); or may be an average of two such periodicities
enerated by beating. We also note that application of our numerical
esults to observable data would be aided by forward modelling
ynthetic signals corresponding to the particular data product. 

 DI SCUSSI ON  

ere, we consider a particular simulation we noted as having very
fficient reflections (top left panel). This is one of our simulations
ith λs = 30 Mm, where the interaction is typically strongest, but

or this specific case the trapping of wave energy is significantly
reater than others. The generation of large amplitudes (greater than
he amplitude of the driver) is due to constructive interference of
he reflected waves. We demonstrate this by repeating the simulation
ith a numerical domain which is extended by λd /4 = 15 Mm near

he lo wer, dri v en footpoint. In this additional re gion, the medium is
niform so its only effect is to introduce a phase shift, compared
ith the previous simulation, as the driven waves encounter the
ensity perturbations. In this case (top right panel), we obtain velocity
erturbations that are significantly lower, both during and after the
riving phase. 
The scenario with significant constructive interference is therefore

 consequence of the particular details of the random medium but also
ue to the period of our driver being exactly constant (no changes in
hase). We can further demonstrate this effect by varying the period
f oscillation during the driving phase; the bottom left panel of Fig. 8
hows the case of the period increasing linearly in time from 0.9 P d 

 54 s to 1.1 P d = 66 s o v er the driving time of 3000 s. The bottom
ight panel shows the case of the period decreasing between the
ame limits during the driving phase. In both scenarios, the typical
mplitude is between the more extreme cases presented in the top
anels. We therefore caution against the use of a monochromatic
river in numerical simulations due to the potential for misleading
esults based on the sensitivity to the details of random structuring. 

In the solar atmosphere, the driving due to random footpoint
otions is unlikely to have a monochromatic spectrum. The random

ensity perturbations will also vary in time due to non-linear (e.g.
onderomotive motions, KHI) and non-ideal processes (e.g. heating).
he range of behaviours present in our various simulations therefore

epresent different conditions which may be satisfied at different
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Figure 8. Velocity profile for case of particularly efficient wave trapping (top left). The top right panel shows the equivalent result when the location of the 
driven boundary is shifted relative to the density perturbations. The bottom panels show the effect of replacing the constant period driver with an increasing 
(left) or decreasing (right) value. 
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imes. Based on Fig. 4 , we can expect that reflections typically
ncrease the lifetime of propagating waves in the region of interest 
y up to 2–3 times (corresponding to a ratio of 1–1.5), but also
ccasionally by a significantly greater factor when conditions are 
a v ourable. 

We may consider the implications of our results for the potential 
f wave heating by propagating waves in a randomly structured 
edium. We have demonstrated that modest (20 per cent stan- 

ard deviation) density perturbations are capable of significantly 
xtending the lifetime of propagating waves within some region of 
nterest. More heating could occur at lower heights than would do 
o in a comparable uniform medium since additional wave energy 
hat would escape the region of interest without reflections remains 
 vailable for dissipation, b ut even so only under certain conditions
see next paragraph about Poynting flux). In the case of weakly 
on-linear driv en wav es, the constructiv e interference by reflections 
ay also enhance non-linear dissipation mechanisms. On the other 

and, the reflected waves will modify the Poynting flux injected by 
he wave driver. Unless the driving happens to be resonant with the
eturning modes, the mean energy injection rate will decrease (see 
.g. Prok op yszyn & Hood 2019 ; Prok op yszyn, Hood & De Moortel
019 ). Consequently, the trapping of energy through wave reflections 
oes not necessarily lead to a similar increase in the heating rate at
ow altitudes. 

In Section 3.2 , we demonstrated that additional periodicities 
ssociated with the random structuring can be generated, for which 
ome frequency-dependent damping mechanism may be stronger. 
o we ver, typically only a small fraction of the driven wave energy is

ontained in these oscillations. The increased exposure of the waves 
o some damping mechanism at lower heights may therefore be the 

ost significant effect. 

S

 C O N C L U S I O N S  

he propagation of waves through a medium with random (density) 
tructuring will generally lead to reflections. This has previously 
een shown to generate quasi-periodic oscillations from an initial 
ulse. In this paper, we consider the effect in terms of trapping
ave energy at lower heights as it provides greater opportunities 

or heating (although we do not study heating directly in our ideal
imulations). 

We considered density structures that have a characteristic spatial 
cale ( λs ) associated with them. Interaction with propagating waves 
s greatest for wavelengths that are comparable to λs . From our
arametric study, we demonstrated that the retention of wave energy 
epends on the wavelength of the driven waves in comparison to
he spatial scale λs . There can be significant differences between 
articular instances of the random structuring, but the greatest 
nteractions are typically found with λd = 2 λs . This is consistent
ith the result found by Yuan et al. ( 2015 ) for the case of a fast
HD wave pulse in a randomly structured medium. 
We have demonstrated that periodicities can occur in addition to 

hat of the initial driver; the period of the driver, persisting after
he driver is turned off due to trapping of waves by reflection;
 periodicity associated with the random structuring (most clearly 
emonstrated when sufficiently far from the driver period although 
his also corresponds to weaker reflections); and the beating period 
hich is an average of the previous two periods. 
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