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ABSTRACT

We consider the behaviour of Alfvén waves propagating in a medium with random density perturbations. The imposed density
perturbations have a broad-band spectrum and their characteristic spatial scale may be defined according to the peak in the
spectrum. The interaction of the boundary driven Alfvén waves with the medium generates reflections most efficiently when
their wavelength is comparable to the spatial scale of the density perturbations. For our monotonic driver, this leads to the
generation of quasi-periodic oscillations. The periods of oscillation of the propagating Alfvén waves is no longer only associated
with the driver. Additional periodicities may be associated with one or more characteristic spatial scales in the density profile,
or with beating between other spectral components. Multiple wave reflections cause oscillatory power to be retained at low

altitudes, increasing opportunities to contribute to heating at those locations.
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1 INTRODUCTION

Observations have revealed that magnetohydrodynamic (MHD)
waves are ubiquitous in the solar atmosphere. Propagating transverse
waves have been detected in the chromosphere using Hinode (De
Pontieu et al. 2007; Okamoto et al. 2007), and in the corona using the
Coronal Multi-channel Polarimeter (CoMP; Tomczyk et al. 2007).
Such waves attract attention both as a diagnostic technique (e.g.
Nakariakov et al. 2021; Anfinogentov et al. 2022) and as a potential
source of coronal heating (e.g. Van Doorsselaere et al. 2020) and solar
wind acceleration (e.g. van Ballegooijen & Asgari-Targhi 2016).

In closed structures such as coronal loops, waves are efficiently
trapped and periodic transverse displacements have been interpreted
as kink oscillations (e.g. Nakariakov et al. 2021). Their damping and
dissipation through processes of resonant absorption (e.g. Ionson
1978), phase mixing (Heyvaerts & Priest 1983), and the Kelvin—
Helmholtz instability (KHI; e.g. Terradas et al. 2008b) have been
studied in detail. The damping rate of large amplitude kink oscilla-
tions, impulsively excited by flares or CMEs, is frequently used for
coronal seismology as a diagnostic for the properties of the particular
plasma structure. Decayless oscillations are also observed to be
ubiquitous in coronal loops (Anfinogentov, Nakariakov & Nistico
2015), suggesting a continuous source of wave energy, such as
photospheric motions. The ubiquitous propagating waves observed
in the corona (e.g. Tomczyk et al. 2007) may also be associated
with the same energy source as ubiquitous decayless oscillations,
such as random footpoint motions (Afanasyev, Van Doorsselaere &
Nakariakov 2020).
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Fast and Alfvén waves driven by azimuthal footpoint motions have
been investigated for periodic (De Groof, Paes & Goossens 2002)
and random (De Groof & Goossens 2002) drivers. Wave heating
of coronal loops due to azimuthally polarized footpoint motions
has been studied by Berghmans & Tirry (1997) for dissipative
MHD and by Tirry & Berghmans (1997) for ideal MHD. Radially
polarized footpoint motions were considered for an ideal slab model
by Tirry, Berghmans & Goossens (1997) and De Groof & Goossens
(2000).

Waves are also frequently observed in open coronal structures (e.g.
review by Banerjee et al. 2021). Furthermore, coronal heating is not
confined to closed structures. The potential for propagating waves to
account for, or contribute to, heating in open structures is based on
the wave energy present in such waves, and the opportunity for that
energy to be dissipated at the appropriate locations. For Alfvén waves
in open structures, turbulence is often invoked to provide efficient
dissipation of the wave energy (e.g. Cranmer & van Ballegooijen
2005; van Ballegooijen et al. 2011; Asgari-Targhi et al. 2021).

Murawski, Nakariakov & Pelinovsky (2001a) considered the
propagation of fast MHD waves in a randomly structured medium in
the context of global EIT waves. This scenario was also considered by
Yuan et al. (2015), who studied the case of short (Gaussian) fast MHD
pulses propagating in a random medium. The interaction of the wave
with the medium causes the generation of quasi-periodic waves (e.g.
Nakariakov, Pascoe & Arber 2005) and the attenuation of the initial
pulse. The effect of random structuring has also been considered for
acoustic waves, where space-dependent random profiles again cause
attenuation (Medrek et al. 2002), though time-dependent random
fields can cause wave amplification for structuring is in density
(Murawski, Nocera & Médrek 2001b; Nocera, Medrek & Murawski
2001) or velocity profiles (Murawski & Medrek 2003a; Murawski
2004).
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Figure 1. Example of random density profile with A; = 50 Mm. The top panels show the profiles of the plasma density and Alfvén speed. The bottom left panel
shows the arrival delay for a propagating wave in comparison to a uniform medium, given by equation (1). The bottom right panel shows the Fourier power
spectrum of the structured medium (red line is the same spectrum with Tukey smoothing). The vertical dashed line corresponds to k; = 2/, and the green line

represents the source power spectrum.

In this paper, we consider the propagation of transverse MHD
waves through a plasma with random density perturbations which
have a characteristic spatial scale that can be varied. We consider
propagation in open coronal structures for which the direction of
wave propagation is aligned with the magnetic field, rather than
perpendicular as in Murawski et al. (2001a) and Yuan et al. (2015),
although we can expect similar results for low amplitude waves that
are described by the same linear wave equation. We examine the
presence of longitudinal structuring of the plasma density, i.e. the
variation of the Alfvén speed in the direction of wave propagation.
To isolate the effect of longitudinal structuring we do not consider the
presence of transverse structuring, which can have a significant effect
on the dissipation of wave energy and for which the characteristic
spatial scale may be determined independently of longitudinal
structuring, and so we exclude dissipative effects generally. This
paper is organized as follows. We describe our model in Section 2
and present the results of our parametric study in Section 3. Our focus
is on the trapping of wave energy and the generation of additional
periodicities due to the presence of the random perturbations. Further
discussion is presented in Section 4, with conclusions in Section 5.

2 MODEL

We perform a parametric study to investigate the behaviour of Alfvén
waves propagating in a medium with random density perturbations.
The period of our monotonic boundary driver is P; = 60 s and so for
an average Alfvén speed of 1 Mms™', the wavelength of the driven
Alfvén wave is A, = 60 Mm. A key parameter of our model is the
characteristic spatial scale of the density perturbations A;.

MNRAS 516, 2181-2188 (2022)

In Yuan et al. (2015), the randomly structured medium is generated
by a method based on summing sinusoidal perturbations. The
sinusoidal perturbations correspond to the spatial harmonics of the
numerical domain and increasing the number of harmonics leads to
shorter spatial scales being introduced. The correlation length that
characterizes the random medium is then defined as the full width at
half-maximum of the autocorrelation coefficient of the density pro-
file. In this paper, we generate our random density profiles by using
the desired power spectrum to define the weighting of random Fourier
components. The profile of the random perturbations is then obtained
as the inverse Fourier transform. This method is described in Timmer
& Koenig (1995) for the case of a time-series with a power-law
spectrum. In our case, the proposed power spectrum is based on a beta
distribution and is qualitatively similar to a Gaussian distribution but
defined on a finite interval. This method allows us to define the desired
characteristic scale of the density perturbations directly, rather than
constructing a random profile and calculating the corresponding scale
afterwards.

Fig. 1 shows an example of a random density profile used in
our simulations with 1; = 50 Mm. The top left panel shows the
density (in normalized units) with the corresponding Alfvén speed
in the top right panel. For all simulations, the standard deviation
of the amplitude of the random perturbations is 20 per cent of
the background value. For convenience, we also impose that the
perturbations tend to zero at the boundary of the region of interest
(i.e. p =1l atx=0and x = 1000 Mm). The bottom left panel shows the
delay to a wave that propagates at the local Alfvén speed. The delay is
calculated as the arrival time in the structured medium in comparison
to a uniform medium with C4 = 1 Mms~!. For propagation at the
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Figure 2. Example of Alfvén wave velocity time-series (top left). The top right panel shows the Alfvén wave amplitude integrated in time. The dashed line is
the theoretical value for a uniform medium that increases until the end of the driving phase (vertical dotted line). The dotted curve is the difference between the
actual integrated amplitude and that for the uniform medium. The bottom panels show the spatial variation of the wave amplitude, calculated by integrating its
absolute value for times during (left) and after (right) the driving phase. The horizontal dashed line corresponds to the value in a uniform medium.

local Alfvén speed C,(x) the arrival time at a distance d is

z(d)—/d L 4 1)
~Jy Ca) "

The delay for a particular position is determined by the preceding
random structures but is always negative, implying wave acceleration
compared with a uniform medium, by the end of the profile where
the density perturbations average to zero but there is a net increase
in the average wave speed (e.g. Murawski & Medrek 2003b).
The bottom right panel shows the Fourier power spectrum of the
structured medium (red line is the same spectrum with Tukey
smoothing). The vertical dashed line corresponds to k; = 2m/A;.
It is evident from the spectrum that the peak corresponds to the
proposed characteristic spatial scale but is also sufficiently broad
that the density profile does not simply appear as a sinusoidal
oscillation.

We perform simulations using LARE2D (Arber et al. 2001) that
solves the 2.5D non-linear visco-resistive MHD equations. In this
study, our choice of equilibrium and driver corresponds to a 1D
problem of propagating Alfvén waves. The magnetic field is constant
and in the x-direction. The particular density profile is set to be in
equilibrium by varying the temperature to satisfy the condition of
total pressure balance (with a plasma 8 = 0.1). We drive transverse
waves at the lower boundary (x = 0) with the z component of the
velocity, using

v, = Ag sin(wt), ()

where A is the wave amplitude, and w = 27 /P, is the frequency.
This injects Alfvén waves into the domain. The y and z directions
are both invariant throughout the simulations (d/dz = 0 in LARE2D,

and our model further imposes d/dy = 0). The amplitude of the
driver Ag = 0.001 Mms~! is chosen to be sufficiently small to
approximate the linear regime and avoid the non-linear genera-
tion of density perturbations. The driver is applied for 3000 s
which corresponds to 50 cycles. Our use of this extended driving
time means we have a well-defined period associated with the
driven Alfvén wave. In comparison, a short pulse such as that
used in Yuan et al. (2015) corresponds to a broad-band spectrum.
This well defined and constant period assists our analysis of
additional periodicities generated by the random structuring (see
Section 3.2).

An open upper boundary is simulated using an extended damping
layer. The region of interest that contains random density perturba-
tions is x = [0, 1000] Mm, while the full numerical domain extends
to 3000 Mm. Outside the region of interest, velocity perturbations
are artificially damped to ensure there are no reflections from the
upper boundary. The domain is simulated using 30 000 grid points
and an end time of 20 000 s. We note that our choice of normalization
is arbitrary and corresponds to typical spatial and temporal scales for
MHD waves in the solar corona.

3 RESULTS

Our study is comprised of numerous numerical simulations with
different values of structuring wavelength A; and different values
of the seed used in the pseudo-random number generator for the
density profile perturbations. We focus on analysing two effects in
this section; the retention of wave energy by the random structuring,
and the period(s) of oscillation of the Alfvén waves.

MNRAS 516, 2181-2188 (2022)

€20z Areniga4 |0 uo Jasn Aleiqi o[sQ 1o Ausieaiun Aq /12¢299/1812/2/91S/3101e/Seluw/wod dno olwapeoe//:sdny woJl papeojumoq


art/stac2294_f2.eps

2184  D. J. Pascoe et al.

2.0 T T T T T

0.5

amplitude ratio
5
L e e e e e LI e e

0.0 1 L L L L

(=]
N
S
o
o«
5

Histogram Density
@
o

——t
0.5 1.0 1.5 2.0
ratio

Figure 3. Collation of results for simulations with different random seeds. The simulations are summarized by the integrated wave amplitude after the driving

phase compared to the initial input by the driver.

3.1 Trapping of wave energy

For each of our numerical simulations, we use 100 spatial probes
uniformly distributed throughout the region of interest to examine the
wave behaviour. The probes feature of LARE2D allows efficient output
of plasma parameters with maximal temporal resolution i.e. we only
output at 100 locations in the x-direction rather than the full numerical
resolution of 30 000 grid points. The plasma parameters at the probe
locations are output at every internal time-step (as determined in
accordance with the CFL condition) that is typically far higher than
we require in this study and so the data are resampled by interpolating
to a fixed interval of 1 s before further analysis.

To examine the behaviour of Alfvén waves, we focus on the time-
series for the transverse plasma velocity v,. An example of the output
from an individual probe, located 200 Mm from the driven boundary,
is shown in the top left panel of Fig. 2. The full time-series has
a duration of 20000 s but is truncated here for clarity. The two
vertical dashed lines correspond to the arrival times of the start and
end of the driven oscillation (at this height), given by equation (1).
For this particular simulation, weak reflections are generated by the
random density structuring and so the driven oscillation is readily
distinguished from the later oscillations generated by reflections by
the significant decrease in amplitude. This particular probe is located
near a local minimum in the density profile and so during the driven
phase the amplitude is typically higher than the driver amplitude (Ao
=0.001 Mms™!).

The top right panel of Fig. 2 shows the absolute value of the Alfvén
wave amplitude integrated in time,

Alt) = /
0

with the difference that arises due to the effect of reflections
denoted by the dotted line. For this particular case, the difference is
always positive. However, for scenarios in which there is destructive
interference between the driven and reflected waves the difference
may be negative for early times.

We can estimate the typical amplitude during the driven phase by
integrating the absolute value of v, in time for each spatial probe, as
shown in the bottom left panel of Fig. 2. The horizontal dashed line
corresponds to the expected value for a uniform medium based on
the driver amplitude and frequency. The bottom right panel of Fig. 2
shows the same estimated amplitude after the driven phase (for which
the expected value for a uniform medium would be zero). Unlike the
previous panel, the reflected amplitude is typically larger for probes
located closer to the driven boundary due to the greater opportunities
for reflected waves to contribute to the time-series there. The value

v, |dr, 3)
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for consecutive probes can vary according to the particular details of
wave interference.

To capture the behaviour of an individual simulation we consider
the mean value of this integrated wave amplitude remaining after the
driving phase. The result is presented as a ratio where the integrated
wave amplitude is normalized by the value corresponding to the
driver. Hence, a ratio of 1 implies the reflections have effectively
doubled the lifetime of the wave within the region of interest.

Fig. 3 shows the results collated for 10 numerical simulations,
each with the same nominal value of Ay = 50 Mm but with a
different seed for the pseudo-random number generator. Owing to
the details of the particular random sequence, the actual peak(s) in
the generated density profile spectrum may differ slightly from the
nominal value requested by the user. We find that the details of the
random structuring can have a significant effect on the efficiency
of the reflections. The left-hand panel of Fig. 3 shows the results
grouped by simulation; for each of the 10 different random seeds
the plotted amplitude ratio represents the mean value calculated over
all 100 probes, and the error bars correspond to the first and third
quartiles. We note that the labelling of the 10 simulations i = [1,
10] is arbitrary. The right-hand panel is a histogram of the same
data representing the mean value for each of the 1000 probes (10
simulations each with 100 probes). The histogram exhibits a peak
value ~0.5 with a long tail, most of which can be attributed to one
particular simulation (i = 6 in Fig. 3) in this case. Whether the peak
value or the tail is most important or representative for scenarios
relevant to coronal heating remains an open question, though we
note that such extreme cases of wave trapping may arise due to our
use of a monochromatic driver whereas a more realistic driver is
unlikely to be so stable (see further discussion in Section 4).

Fig. 4 shows the summary of results for different values of the
nominal structuring scale A;. The solid line represents the mean
value of the amplitude ratio, while the lower and upper dashed
lines represent the first and third quartiles, respectively. The peak
in each curve occurs at A, = 30 Mm which is related to our choice of
driving period P; = 60 s. For this driving period, this represents the
spatial scale most likely to generate efficient reflections, although as
previously noted this is the nominal spatial scale requested by the user
(i.e. not accounting for random variations). This result is consistent
with that found for a short pulse by Yuan et al. (2015) for which
reflection was found to be most efficient when the correlation length
was half of the initial pulse width. For small values of A, (compared
to the wavelength of the driven wave), the random structuring appears
as fine structuring that MHD waves are typically insensitive to (e.g.
Pascoe, Nakariakov & Arber 2007; Terradas et al. 2008a). At the
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Figure4. Dependence of the wave amplitude ratio on the nominal structuring
spatial scale ;. The solid line represents the mean value of the amplitude ratio,
while the lower and upper dashed lines represent the first and third quartiles.
The lower and upper dotted lines represent the minimal and maximal values.

other extreme of very large Ay, the structuring corresponds to a slowly
varying medium, lacking strong gradients in the Alfvén speed that
promote reflections.

3.2 Generation of periodicities

As described in Section 2, we generate our random structure based
on a proposed spatial scale A, with a corresponding wavenumber k;
= 2m/As. We can consider a periodicity associated with this spatial
scale of P; = 2),/C4. As shown in the example in Fig. 1, the density
profile spectrum is typically broad (to avoid having a monochromatic
spectrum corresponding to sinusoidal perturbations). In other cases,
depending on the particular details of the random density pertur-
bations, the spectrum may feature multiple strong peaks distributed
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around the nominal wavenumber k;. More generally, we can consider
a range of periodicities associated with the spectrum of the random
structuring.

In this section, we present several different cases of additional
periodicities generated by the interaction of the Alfvén waves with
the random density structuring.

At times during the driving phase of the simulation, the oscillations
detected at each probe location are dominated by the period of the
driver. An example of a time-series (top-left panel) and corresponding
power spectrum (bottom-left panel) is shown in Fig. 5 for a probe
at x = 200 Mm in a simulation with A; = 100 Mm. For this large
structuring scale, the period associated with the random structuring
(red curve) is distinct from that of the driver (vertical dashed line),
although the interaction is weak and so the wave amplitudes are small
(see also Fig. 4). The blue vertical dot—dashed line corresponds to
the beating frequency i.e. the average of the frequencies of the driver
and that associated with the structure. The top right panel of Fig. 5
shows the signal at the same probe, starting after the driven waves
and their immediate reflections have passed (taken to be twice the
time for the directly driven waves to have passed). Fig. 6 shows
this later velocity power spectrum calculated for each of the 100
simulation probe locations. Each spectrum is normalized to its own
maximum to remove the variation in amplitude between probes (see
e.g. the variation in the bottom right panel of Fig. 2). The spectra
demonstrate that the period of oscillation which is associated with
the random perturbations is consistent for different locations.

In the example above, the spectrum of the density profile pertur-
bations was well approximated as a single, broad peak. The example
in Fig. 7 shows a scenario for which the spectrum associated with
the random density perturbations has two peaks (corresponding to
spatial scales either side of the nominal value A, = 50 Mm). In this
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Figure 5. Examples of velocity profiles (top) taken during the driving phase of the simulation (left) and at a later time (right). The corresponding power spectra
(bottom) are shown by the black curves. The red curves represent the periodicity associated, with the random structure with the dotted line corresponding to the
nominal structuring spatial scale A;. The dashed and dot—dashed lines correspond to the driver and beating frequencies, respectively.

MNRAS 516, 2181-2188 (2022)

€20z Areniga4 |0 uo Jasn Aleiqi o[sQ 1o Ausieaiun Aq /12¢299/1812/2/91S/3101e/Seluw/wod dno olwapeoe//:sdny woJl papeojumoq


art/stac2294_f4.eps
art/stac2294_f5.eps

2186  D. J. Pascoe et al.

200 400 600 800
x (Mm)

Figure 6. Velocity power spectra calculated for each probe location. The
horizontal dashed line corresponds to the period of the driver. The spectrum
for each probe is normalized to its maximum to remove the variation in
amplitude between probes.

o
©

o
=
©

200 400 600 800

Q
o
o

5107

v, (Mm/s)

-5x1075{H

—1x107f

L L L L L
7000 7500 8000 8500 9000 9500
time (s)

0.8

0.6

0.4

power spectral density

0.2

o
o
S

0.01 0.02 0.03
f(Hz)

o
o
b

Figure 7. Example of a density profile that features two dominant spectral
components (top panel). The middle panel shows an example velocity profile,
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panel. The red curve shows the spectral profile associated with the density
perturbations.
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case, the lower A (in comparison to the previous example of A; =
100 Mm) is more favourable for interaction with the driven waves,
i.e. closer to the peak value of 30 Mm, and so the reflected wave
energy is significantly larger. A strong peak in the power spectrum
corresponding to the reflected driven waves persists long after the
directly driven waves have passed. There is a second strong peak in
the velocity power spectrum of f = 0.0125 Hz which is associated
with a particular spatial scale present in the plasma density profile. We
note that this is not the dominant spectral component of the density
profile, but is instead the one which is most similar to the frequency
of the driver. There is also a peak in the velocity power spectrum
corresponding to the other density profile periodicity although its
amplitude is negligible.

These results suggest possible seismological applications to inves-
tigate the plasma properties of open magnetic structures by demon-
strating that the periodicities present in the system are determined
by the longitudinal structuring in addition to the initial wave source.
However, it is evident that caution is required in interpreting the
detected periodicities since the previous two examples demonstrate
that periodicities may be due to several different factors: they may
be associated with the footpoint driver; they may correspond to a
characteristic scale present in the medium (though not necessarily
the dominant one); or may be an average of two such periodicities
generated by beating. We also note that application of our numerical
results to observable data would be aided by forward modelling
synthetic signals corresponding to the particular data product.

4 DISCUSSION

Here, we consider a particular simulation we noted as having very
efficient reflections (top left panel). This is one of our simulations
with A, = 30 Mm, where the interaction is typically strongest, but
for this specific case the trapping of wave energy is significantly
greater than others. The generation of large amplitudes (greater than
the amplitude of the driver) is due to constructive interference of
the reflected waves. We demonstrate this by repeating the simulation
with a numerical domain which is extended by 1,/4 = 15 Mm near
the lower, driven footpoint. In this additional region, the medium is
uniform so its only effect is to introduce a phase shift, compared
with the previous simulation, as the driven waves encounter the
density perturbations. In this case (top right panel), we obtain velocity
perturbations that are significantly lower, both during and after the
driving phase.

The scenario with significant constructive interference is therefore
aconsequence of the particular details of the random medium but also
due to the period of our driver being exactly constant (no changes in
phase). We can further demonstrate this effect by varying the period
of oscillation during the driving phase; the bottom left panel of Fig. 8
shows the case of the period increasing linearly in time from 0.9 P,
=54 sto 1.1 P, = 66 s over the driving time of 3000 s. The bottom
right panel shows the case of the period decreasing between the
same limits during the driving phase. In both scenarios, the typical
amplitude is between the more extreme cases presented in the top
panels. We therefore caution against the use of a monochromatic
driver in numerical simulations due to the potential for misleading
results based on the sensitivity to the details of random structuring.

In the solar atmosphere, the driving due to random footpoint
motions is unlikely to have a monochromatic spectrum. The random
density perturbations will also vary in time due to non-linear (e.g.
ponderomotive motions, KHI) and non-ideal processes (e.g. heating).
The range of behaviours present in our various simulations therefore
represent different conditions which may be satisfied at different
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Figure 8. Velocity profile for case of particularly efficient wave trapping (top left). The top right panel shows the equivalent result when the location of the
driven boundary is shifted relative to the density perturbations. The bottom panels show the effect of replacing the constant period driver with an increasing

(left) or decreasing (right) value.

times. Based on Fig. 4, we can expect that reflections typically
increase the lifetime of propagating waves in the region of interest
by up to 2-3 times (corresponding to a ratio of 1-1.5), but also
occasionally by a significantly greater factor when conditions are
favourable.

We may consider the implications of our results for the potential
of wave heating by propagating waves in a randomly structured
medium. We have demonstrated that modest (20 per cent stan-
dard deviation) density perturbations are capable of significantly
extending the lifetime of propagating waves within some region of
interest. More heating could occur at lower heights than would do
so in a comparable uniform medium since additional wave energy
that would escape the region of interest without reflections remains
available for dissipation, but even so only under certain conditions
(see next paragraph about Poynting flux). In the case of weakly
non-linear driven waves, the constructive interference by reflections
may also enhance non-linear dissipation mechanisms. On the other
hand, the reflected waves will modify the Poynting flux injected by
the wave driver. Unless the driving happens to be resonant with the
returning modes, the mean energy injection rate will decrease (see
e.g. Prokopyszyn & Hood 2019; Prokopyszyn, Hood & De Moortel
2019). Consequently, the trapping of energy through wave reflections
does not necessarily lead to a similar increase in the heating rate at
low altitudes.

In Section 3.2, we demonstrated that additional periodicities
associated with the random structuring can be generated, for which
some frequency-dependent damping mechanism may be stronger.
However, typically only a small fraction of the driven wave energy is
contained in these oscillations. The increased exposure of the waves
to some damping mechanism at lower heights may therefore be the
most significant effect.

5 CONCLUSIONS

The propagation of waves through a medium with random (density)
structuring will generally lead to reflections. This has previously
been shown to generate quasi-periodic oscillations from an initial
pulse. In this paper, we consider the effect in terms of trapping
wave energy at lower heights as it provides greater opportunities
for heating (although we do not study heating directly in our ideal
simulations).

We considered density structures that have a characteristic spatial
scale (A,) associated with them. Interaction with propagating waves
is greatest for wavelengths that are comparable to A,. From our
parametric study, we demonstrated that the retention of wave energy
depends on the wavelength of the driven waves in comparison to
the spatial scale A,. There can be significant differences between
particular instances of the random structuring, but the greatest
interactions are typically found with A, = 2A;. This is consistent
with the result found by Yuan et al. (2015) for the case of a fast
MHD wave pulse in a randomly structured medium.

We have demonstrated that periodicities can occur in addition to
that of the initial driver; the period of the driver, persisting after
the driver is turned off due to trapping of waves by reflection;
a periodicity associated with the random structuring (most clearly
demonstrated when sufficiently far from the driver period although
this also corresponds to weaker reflections); and the beating period
which is an average of the previous two periods.
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