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Abstract: The distribution of tsunami runup heights along the coast is studied both theoretically
and experimentally using observation data of historical tsunami from 1992 to 2018. The physical
mechanisms leading to the lognormal distribution of tsunami runup heights along the coast are
discussed, and its statistical moments are calculated. It is shown that the lognormal distribution
describes well the measurements of tsunami characteristics over the past 30 years. Special attention is
paid to the multi-source 2018 Palu–Sulawesi tsunami, which was generated by an earthquake with
magnitude 7.5 and numerous subsequent landslides. It is shown that even in this special case the
lognormal distribution is a rather good approximation.

Keywords: lognormal distribution; tsunami runup heights; distribution functions

1. Introduction

A lot of data has been accumulated on the distribution of tsunami heights along the
coast, both from historical data and from numerical modelling of historical and hypothetical
events. In particular, a lot of data was obtained after the catastrophic Indian Ocean 2004
tsunami due to its global propagation and impact. An analysis of the distribution of wave
heights along the coast allows zoning of areas according to the degree of tsunami hazard
and to plan measures to prevent and mitigate the consequences of natural disasters. Taking
into account the recurrence of earthquakes, it is possible to obtain long-term estimates
of tsunami heights for specific coastal points with a given probability; such assessments
are now being carried out as part of the PTHA approach (Probabilistic Tsunami Hazard
Assessment) [1].

Meanwhile, even for one specific event, the distribution of tsunami heights along the
coast is extremely inhomogeneous, and for its analysis one can use methods of probability
theory and mathematical statistics. Van Dorn [2] was the first to apply a statistical approach
to analyze observed tsunami runup heights. He found that a lognormal distribution was
the best fit for tsunamis on the coast of the Hawaiian Islands. This analysis was continued
by [3] with a special focus on the Japanese coast. He analyzed six events: Meiji Sanriku
of 15 June 1896, Showa Sanriku of 3 March 1933, Nankaido of 21 December 1946, Chile
of 23 May 1960, Niigata of 16 June 1964, and Tokashi-oki of 16 May 1968. The theoretical
interpretation of the lognormal distribution associated with random seafloor heterogeneity
was given by Go Chan Nam (his original paper was published in Russian as a preprint,
while English translation is given in [4]). Subsequently, the lognormal distribution was
used to describe many real tsunamis that occurred in 1992–2011, including the catastrophic
tsunamis of 2004 and 2011 [5–8]. Meanwhile, when analyzing real data, deviations from the
lognormal distribution have also been found, see papers cited above. There may be several
reasons for this. First, this could be related to the strong nonlinearity of tsunami waves
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approaching the coast in the form of a bore. Then, due to the nonlinear dissipation of the
wave energy at the front, the bore height also changes. Second, the properties of different
sections of the coast differ from each other, violating the main assumption of the central
limit theorem on the homogeneity of random variables. This idea is developed by [9–12],
who believed that the generalized Pareto distribution would be a better approximation of
the tsunami wave heights distribution on the coast. Third, the measurements of historical
tsunamis are not statistically homogeneous, with more detailed data (with a small step)
often being obtained in the region of the largest runups. Fourth, the seabed bathymetry is
not statistically homogeneous and contains extended deterministic sections (continental
slope, shelf) on which wave transforms according to the classical (deterministic) methods
of the long wave theory.

In this paper, we discuss the lognormal distribution of tsunami runup heights along
the coast, which is often used to interpret field survey data (Section 2). This analysis is
supplemented by calculating the exact statistical moments of this distribution. In Section 3
we analyze the field survey data for a number of historical tsunamis. The data from
the multi-source catastrophic 2018 Palu–Sulawesi tsunami is analyzed in Section 4 using
distribution functions. The results are summarized in Discussion.

2. Lognormal distribution

The use of lognormal distribution for tsunami runup heights along the coast has been
suggested in [2–4], and then revised in [5,13,14]. It is based on the linear theory of wave
propagation in the basin of random topography. Even within the linear shallow water
wave theory, the wave of maximal height approaching the coast is a result of a complicated
process of wave reflection, refraction, diffraction, and resonant effects. Very often, the wave
of maximal amplitude is not a leading wave. However, due to the linearity of shallow
water equations, the runup height, H, is always proportional to the wave height in the
tsunami source, H0:

H = KH0, (1)

where the coefficient of wave transformation, K, can be computed within a 2D numerical
model. In general, coefficient K has no evident physical sense due to the processes men-
tioned above. If the tsunami wavelength is short compared with the characteristic scale of
seabed variations, the ray theory can be used. In this case, 2D equations can be reduced to
the set of 1D equations along the propagation path. The ray pattern can be easily computed
within the ordinary differential equations of the second order [15]:

dθ

dt
=

cos ζ

nR
, (2)

dϕ

dt
=

sin ζ

R sin θ
, (3)

dζ

dt
=

sin ζ

n2R
∂n
∂θ

+
cos ζ

n2R sin θ

∂n
∂ϕ
− sin ζ cos θ

nR
, (4)

where θ anwhere θ and ϕ are latitude and longitude of the ray, n = (gh)−1/2 is the slowness,
g is the gravity acceleration, h(θ,ϕ) is the water depth, R is the radius of the Earth, and ζ is
the ray direction measured counter-clockwise from the South.

An example of ray theory computations from isotropic hypothetical tsunami source in
the East Sea is shown in Figure 1, where one can clearly see the complicated character of
ray paths due to seafloor variations.
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Figure 1. Ray theory computations from isotropic hypothetical tsunami source in the East Sea.

In ray theory, the wave height is described by the famous Green’s law, which is often
applied to estimate wave characteristics in the coastal zone.

H(l) = H0

[
h0

h(l)

]1/4[ B0

B(l)

]1/2
, (5)

where l is the distance along the wave path, h(l) is a local water depth, and B(l) is a
differential width of the ray tube (distance between the neighbouring rays). Coefficient K in
Equation (1) depends on water depth change along a propagation path and is determined
by random bathymetry. After dividing the propagation path into a series of more or less
statistically independent segments, the total transformation coefficient becomes a product
of the local coefficients of tsunami wave transformation in each segment. In this case,
Equation (1) can be rewritten in the logarithmic form:

lnH = lnH0 + ∑
i

lnKi (6)

where i characterizes the number of random statistically independent segments along
the propagation path and ln Ki can be considered as independent random variables. The
central limit theorem states that the sum of many random independent variables tends
to the Gaussian distribution, and therefore ln H is described by the normal curve. It
means that a probability density function (pdf) of the wave height is described by the
lognormal distribution:

f (H) =
1

Hσln
√

2π
exp

[
− (ln H − a)2

2σ2
ln

]
. (7)

This distribution has two parameters with evident physical meaning: a = <ln H> is the
average value, and σln is the standard deviation of the logarithm of the wave height. For
definition, wave height is measured in meters. This function has been widely used to study
tsunami characteristics [2,3,5–7].
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The lognormal distribution Equation (7) can be reduced to a dimensionless form by
introducing a change of variables

y =
H1/σln

exp(a/σln)
, (8)

f (y) =
1√
2py

exp
[
−1

2
(ln y)2

]
(9)

then the four statistical moments of this distribution can be calculated analytically:

< y >=
1√
2π

∞∫
0

exp

[
− (ln y)2

2

]
dy =

√
e ∼= 1.65, (10)

σ2 =
1√
2π

∞∫
0

(y− < y >)2

y
exp

[
− (ln y)2

2

]
dy = e2 − e ∼= 4.67, σ ∼= 2.16, (11)

Sk =
1√

2πσ3

∞∫
0

(y− < y >)3

y
exp

[
− (ln y)2

2

]
dy =

e9/2 − 3e5/2 + 2e3/2

(e2 − e)3/2 =
√

e− 1(2 + e) ∼= 6.18, (12)

Ku =
1√

2πσ4

∞∫
0

(y− < y >)4

y
exp

[
− (ln y)2

2

]
dy = e4 + 2e3 + 3e2 ∼= 113.9. (13)

Here <y> is the average, σ is standard deviation, Sk is skewness and Ku is kurtosis of
variable y.

From these estimates follows that the lognormal distribution is very different from the
normal (Gaussian) distribution, see Figure 2, which also shows a segment of the Gaussian
distribution with the same mean value. In the range of large values lognormal distribution
decreases slower than the normal one, demonstrating the decisive contribution of high
wave runup heights to the statistical moments.
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Figure 2. Dimensionless lognormal (blue) and Gaussian (red) probability density functions.

However, in practice, it is quite difficult to use the probability density functions for
analysis of real tsunamis due to the large scatter of measurements and data of observations.
It is much more convenient to use the integral distribution function, which is smoother:

F(y) =
1√
2π

∞∫
y

1
z

exp
[
−1

2
(ln z)2

]
dz (14)
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In practice, distribution functions are built in decimal logarithms, not natural ones. This
leads to the following modification of the integral distribution function and its argument:

F(y) =
1√

2π ln 10

∞∫
y

1
z

exp
[
−1

2
(log z)2

]
dz (15)

y =
H1/σln

exp(a/σln)
. (16)

The last Equations (15) and (16) are used below for analysis of field survey data.

3. Tsunami Observations

In Figure 3 the data of 11 tsunamis from 1990s are plotted on a single graph. The
data include: Flores Island tsunami, Indonesia, 12 December 1992; tsunami at the East
Korean Coast, 12 July 1993; Hokkaido tsunami, Japan, 12 July 1993; Java tsunami, Indonesia,
2 June 1994; tsunami in Kuril Islands, Russia, 4 October 1994; Mindoro Island tsunami,
Philippines, 14 November 1994; Chile tsunami, 30 July 1995; Sulawesi tsunami, Indonesia,
1 January 1996; Western Irian Jaya tsunami, Indonesia, 17 February 1996; tsunami in Peru,
21 February 1996; and Papua New Guinea tsunami, 17 July 1998. These data, which
include both seismic and landslide induced tsunamis, are discussed in [5]. Most of them
are tsunamis of moderate magnitude. It can be seen that all these data nicely follow the
lognormal distribution.
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Figure 3. Dimensionless integral probability distribution function for tsunami runup heights from 11
different tsunamis of 1990s. Solid line represents theoretical curve, while dots denote the field survey
data of runup heights of 11 tsunamis from 1990s [5].

The 2004 Indian Ocean tsunami was the largest ever recorded in several countries.
Analysis of its runup height distribution function was made in [6] and is shown in Figure 4.
As we can see, the observation data of this exceptionally large tsunami are also well
approximated by the lognormal distribution.

Similar results were obtained also for runup heights of the 2011 Japan tsunami
(Figure 5). This dataset was compiled from several field surveys run by different scientific
groups, references to which can be found in [7]. Most of these data with a high spatial
resolution were obtained in the region of very high tsunami runups and were correlated.
This led to the violation of the ‘randomness’ criterion of the wave propagation paths, which
is the basic assumption underlying the lognormal distribution. The importance of the ‘valid’
spatial resolution of the data is discussed in [7]. In Figure 5 one can see the distribution
functions of the 2011 tsunami using a different spatial resolution of the observations. It can
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be seen that an increase in a spatial scale along the coast in several kilometers leads to a
better fit of the measurement data to the lognormal distribution.
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4. Palu-Sulawesi 2018 Tsunami

Another interesting example is the Palu–Sulawesi tsunami, which occurred on 28
September 2018. Its maximum runup height reached 9.1 m. The tsunami was generated by
a strike-slip earthquake with magnitude 7.5, which subsequently caused several tsunami-
genic submarine and subaerial landslides; [16–19] suggested that the observed tsunami
was initiated predominantly by submarine/subaerial landslides and the contribution of
earthquake tsunami is <20% of the maximum wave height.

Thus, the observational data are divided into sets of measurements from many in-
dividual tsunami events. Moreover, the final dataset is compiled not from their linear
superposition, but with a cumulative effect since the tsunami runup height in a particular
location depends on the sum of these events with unknown weights. It is unclear whether
the lognormal distribution is suitable for such heterogeneous sources.

The 55 runup height measurements from the field survey conducted by [18] were
used to plot the runup height distribution function for the 2018 Palu–Sulawesi tsunami
(Figure 6). It can be seen that even in this complex multi-source tsunami generation the
data still follow closely the lognormal distribution.
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Figure 6. Runup height integral probability distribution functions of the 2018 Palu-Sulawesi tsunami.
Solid line represents theoretical curve, while different markers denote the field survey data of
runup heights.

5. Discussion

In this paper we discuss the application of the lognormal distribution to the data of
tsunami wave runups at the coast. This topic was of a special interest of Professor Byung
Ho Choi for several decades. Here we discuss the applicability of lognormal distribution
for description of tsunami runup heights, calculate exactly the four statistical moments of
the lognormal distribution and apply it to several different historic tsunami datasets. It
has worked very well to describe the available tsunami data with a spatial resolution of
several kilometers. For more detailed data, the “randomness” condition, lying in the basis
of applicability of lognormal distribution is violated, so that the propagation paths cannot
be considered independent and lognormal distribution does not work so well.

We also apply lognormal distribution to the 2018 Palu–Sulawesi tsunami, which
was induced by the 7.5 earthquake and several subsequent landslides. It is shown that
even in this complex multi-source case, the tsunami runup heights still nicely follow the
lognormal distribution.

We note that the real probability distribution is unaware of the assumptions of the
theoretical model. However, it confirms the main ideas of the model. First of all, it is the
inhomogeneity of the bathymetry, which leads to a lognormal distribution of wave heights
along the coast. Regardless of its origin (earthquake or landslide), a tsunami propagates
over a basin of non-uniform bathymetry. Of course, the distribution parameters should
depend on the characteristics of the source. However, in practice, when measuring wave
heights, we do not know the exact cause of it, which is often the superposition (linear or
non-linear) of the heights of partial events (earthquake or landslide, or several landslides). It
averages the observed characteristics of the distribution, making it single-peak. Deviations
from the lognormal distribution are most likely due to the multiple sources of the event, but
it is not possible to identify this from the available data. To understand how each tsunami
source affects the total distribution function, numerical modelling of tsunami from each
tsunami source is needed.

All this is important for the evaluation of tsunami magnitude, which is defined by
the averaged tsunami runup height on the coast. Knowing the distribution function, we
can estimate the probability of missing measurements (this can happen due to the limited
access to certain locations), with an extreme wave height, and estimate variations in the
tsunami magnitude.
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