
Journal of Functional Analysis 284 (2023) 109795
Contents lists available at ScienceDirect

Journal of Functional Analysis

journal homepage: www.elsevier.com/locate/jfa

Full Length Article

C∗-irreducibility for reduced twisted group 

C∗-algebras
Erik Bédos a,∗, Tron Omland b

a Department of Mathematics, University of Oslo, NO-0316 Oslo, Norway
b Norwegian National Security Authority, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 August 2022
Accepted 19 November 2022
Available online 7 December 2022
Communicated by Stefaan Vaes

Keywords:
C∗-irreducible inclusions
Reduced twisted group C∗-algebras
FC-hypercentral groups
C∗-simple groups

We study C∗-irreducibility of inclusions of reduced twisted 
group C∗-algebras and of reduced group C∗-algebras. We 
characterize C∗-irreducibility in the case of an inclusion 
arising from a normal subgroup, and exhibit many new 
examples of C∗-irreducible inclusions.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let A be a unital C∗-algebra and B ⊆ A be a unital inclusion, i.e., B is a C∗-
subalgebra of A containing the unit 1 of A. A C∗-algebra C such that B ⊆ C ⊆ A

is called an intermediate C∗-algebra of B ⊆ A. Inspired by several previous works, in-
cluding [23], [2] and [3], Rørdam recently introduced [42] the notion of C∗-irreducibility 
for such inclusions of C∗-algebras: B ⊆ A is said to be C∗-irreducible if every inter-
mediate C∗-algebra of B ⊆ A is simple. Besides giving an intrinsic characterization of 
C∗-irreducibility, Rørdam presents in [42] several examples of C∗-irreducible inclusions 
arising in various settings, such as groups, dynamical systems, inductive limits and ten-
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sor products. New examples have since appeared in [15,29,26]. The related problem of 
determining all intermediate C∗-algebras of a given inclusion has attracted a lot of at-
tention over the years, also in its von Neumann algebraic version. As a sample, we refer 
to [1,11–13,23,44,46,48].

Some other properties of unital inclusions of C∗-algebras have also been studied. In 
[45], Ursu says that B ⊆ A is relatively simple if any unital completely positive map on 
A which is a ∗-homomorphism on B is faithful on A. Every relatively simple inclusion 
is C∗-irreducible [45, Proposition 3.6]. On the other hand, inspired by the terminology 
used for von Neumann algebras, a unital inclusion B ⊆ A of C∗-algebras is said to be 
irreducible if B′ ∩ A = C1. Equivalently, as we will see later, this amounts to require 
that every intermediate C∗-algebra of B ⊆ A has trivial center. Every C∗-irreducible 
inclusion is irreducible, as explained in [42, Remark 3.8], but the converse does not hold 
in general. Another property of a unital inclusion B ⊆ A that has been of interest in the 
past is the relative Dixmier property, which says that for any a ∈ A the norm closure of 
the convex hull of {uau∗ : u unitary in B} contains a scalar (see [40,42] and references 
therein). It is stronger than C∗-irreducibility when A has a faithful tracial state, and 
always stronger than irreducibility, cf. [42, Proposition 3.12].

Now, let G be a discrete group and σ a (circle-valued) two-cocycle on G. One may then 
form the associated reduced twisted group C∗-algebra C∗

r (G, σ) and the twisted group 
von Neumann algebra L(G, σ). Our main focus in this article is to study C∗-irreducibility 
of inclusions of the form C∗

r (H, σ) ⊆ C∗
r (G, σ), where H is a subgroup of G. A necessary 

condition for this to happen is clearly that both C∗
r (H, σ) and C∗

r (G, σ) are simple. When 
σ is trivial, this means that H and G have to be C∗-simple. However, despite the recent 
breakthroughs [8,21,28] in the theory of C∗-simple groups, the problem of determining 
when a reduced twisted group C∗-algebra is simple is more complicated, see for example 
our discussion in [7]. This indicates that obtaining an intrinsic characterization of the C∗-
irreducibility of C∗

r (H, σ) ⊆ C∗
r (G, σ) is probably also a challenging problem in general. 

Anyhow, when H is normal in G, we are able to show in Theorem 6.2 that C∗
r (H, σ) ⊆

C∗
r (G, σ) is C∗-irreducible if and only if C∗

r (H, σ) is simple and (H ≤ G, σ) satisfies the 
so-called relative Kleppner condition. Moreover, if H is FC-hypercentral or C∗-simple, 
then we get that C∗

r (H, σ) ⊆ C∗
r (G, σ) is C∗-irreducible if and only if (H ≤ G, σ) satisfies 

the relative Kleppner condition, if and only if C∗
r (H, σ) ⊆ C∗

r (G, σ) satisfies the relative 
Dixmier property. The relative Kleppner condition, which is of purely combinatorial 
nature, has its origin from Kleppner’s work [30] on factoriality of twisted group von 
Neumann algebras. As we show in Proposition 4.3, it is equivalent to the irreducibility 
of C∗

r (H, σ) ⊆ C∗
r (G, σ) (resp. L(H, σ) ⊆ L(G, σ)). When σ is trivial, this condition just 

says that G is icc relatively to H, and we obtain in Theorem 6.4 that if H is normal in G, 
then C∗

r (H) ⊆ C∗
r (G) is C∗-irreducible if and only if H is C∗-simple and the centralizer 

CG(H) of H in G is trivial. As shown by Ursu in [45], this is in turn equivalent to 
C∗

r (H) ⊆ C∗
r (G) being relatively simple. Our Theorem 6.4 should be seen in light of 

[8, Theorem 1.4], which says that G is C∗-simple if and only if both H and CG(H) are 
C∗-simple.



E. Bédos, T. Omland / Journal of Functional Analysis 284 (2023) 109795 3
We pay some special attention to the case where H is a normal subgroup which is 
prime, in the sense that the FC-center of H is torsion-free, cf. Definition 3.12. Under 
this assumption, we characterize when (H ≤ G, σ) satisfies Kleppner’s condition in 
Theorem 3.15, and show in Corollary 6.9 that C∗

r (H, σ) ⊆ C∗
r (G, σ) is C∗-irreducible if 

and only if C∗
r (H, σ) is simple and the twisted centralizer Cσ

G(H) of H in G is trivial. 
This last result takes an even simpler form if H is also assumed to be FC-hypercentral, 
or if H is C∗-simple, cf. Corollary 6.10.

When H is a normal subgroup of G, our approach is to decompose C∗
r (G, σ) as 

the reduced twisted C∗-crossed product of C∗
r (H, σ) by a twisted action of the quo-

tient group G/H, and combine this fact with a study of C∗-irreducibility for reduced 
twisted C∗-crossed products. As a bonus, the intermediate C∗-algebras of the inclusion 
C∗

r (H, σ) ⊆ C∗
r (G, σ) can be described by making use of Cameron and Smith’s result 

[12, Theorem 4.4] for simple reduced twisted C∗-crossed products. When H is not nor-
mal in G, such a decomposition is not available, and we point out in Remark 6.8 that 
Theorem 6.2 does not necessarily hold in this case, even if σ is trivial.

Our paper is organized as follows. Section 2 is devoted to some preliminary material 
on reduced twisted group C∗-algebras and twisted group von Neumann algebras. In the 
next section we discuss when a group G is icc relatively to a subgroup H and intro-
duce the relative Kleppner condition for (H ≤ G, σ), where σ is a two-cocycle on G. 
The main goal of Section 4 is to show the equivalence of the relative Kleppner condi-
tion being satisfied and the irreducibility of the associated inclusions of twisted group 
algebras, as mentioned above. We also show that this is equivalent to the primeness of 
every intermediate C∗-algebra of C∗

r (H, σ) ⊆ C∗
r (G, σ). In Section 5 we first point out 

that Rørdam’s result [42, Theorem 5.8], which characterizes the C∗-irreducibility of the 
inclusion A ⊆ A �r G, where A �r G is the reduced C∗-crossed product associated to 
an action of G on a unital C∗-algebra A, is still valid in the case of a twisted action. 
Assuming that H is a normal subgroup of G, we obtain in Theorem 5.3 a character-
ization of the C∗-irreducibility of A �r H ⊆ A �r G for a twisted action. Section 6
contains our characterization of the C∗-irreducibility of C∗

r (H, σ) ⊆ C∗
r (G, σ), hence of 

C∗
r (H) ⊆ C∗

r (G), and some of the consequences that may be drawn from it. We illustrate 
our findings in Section 7, where we present various new examples of C∗-irreducible inclu-
sions, involving noncommutative tori, the discrete Heisenberg group, the braid group on 
infinitely many strands, and wreath products. In Section 8, we apply our results to pro-
duce C∗-irreducible inclusions associated to groups acting on trees, e.g., amalgamated 
free products and HNN-extensions. Our final section is a sequel where we have included 
a related result on the simplicity of C∗

r (G, σ) in the presence of a normal subgroup.

2. Preliminaries

Let G be a discrete group with identity e. By a (normalized) two-cocycle on G we will 
mean in this article a map σ : G ×G → T satisfying
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σ(g, h)σ(gh, k) = σ(g, hk)σ(h, k),

σ(g, e) = σ(e, g) = 1

for all g, h, k ∈ G. We assume throughout this paper that G and σ are given. We recall 
that if σ′ is also a two-cocycle on G, then σ′ is said to be similar to σ if there exists a 
function β : G → T such that β(e) = 1 and

σ′(r, s) = β(r)β(s)β(rs)σ(r, s) for all r, s ∈ G.

The (left) regular σ-projective representation λσ : G → B(�2(G)) is defined by

λσ(g)ξ(h) = σ(g, g−1h)ξ(g−1h)

for g, h ∈ G and ξ ∈ �2(G). The reduced twisted group C∗-algebra C∗
r (G, σ) is the C∗-

subalgebra of B(�2(G)) generated by λσ(G), and the twisted group von Neumann algebra 
L(G, σ) is the von Neumann subalgebra of B(�2(G)) generated by λσ(G). The unit in 
both these algebras is the identity operator on �2(G). If σ′ is a two-cocycle on G which 
is similar to σ via a map β : G → T , then, as is well-known and easy to check, C∗

r (G, σ′)
(resp. L(G, σ′)) is ∗-isomorphic to C∗

r (G, σ) (resp. L(G, σ)) via a map Φ sending λσ′(g)
to β(g)λσ(g) for each g ∈ G. There is a canonical faithful tracial state τ on L(G, σ), 
hence also on C∗

r (G, σ), namely the restriction of the vector state on B(�2(G)) associated 
to the characteristic function δe of {e} in G.

Let the map σ̃ : G ×G → T be defined by

σ̃(h, g) = σ(h, g)σ(hgh−1, h).

Then a simple computation gives that

λσ(h)λσ(g)λσ(h)∗ = σ̃(h, g)λσ(hgh−1)

for all h, g ∈ G. Some further computations using the cocycle identity give that for all 
r, s, t ∈ G we have:

σ̃(rs, t) = σ̃(r, sts−1)σ̃(s, t) (1)

σ̃(r, st) = σ(s, t)σ(rsr−1, rtr−1)σ̃(r, s)σ̃(r, t) (2)

These identities are similar to those stated in [39, (1.1)-(1.2)], but beware that our 
definition of σ̃ is different from theirs: if σ̃PR denotes this function from [39], then 
σ̃(r, s) = σ̃PR(s, r−1). From (1) and (2) we immediately get

σ̃(rs, t) = σ̃(r, t)σ̃(s, t) whenever st = ts, (3)

σ̃(r, st) = σ̃(r, s)σ̃(r, t) whenever rs = sr and rt = tr. (4)
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As usual, when σ is trivial (i.e., σ(g, h) = 1 for all g, h ∈ G), we skip it in our notation 
and from our terminology. So, for example, L(G) denotes the group von Neumann algebra 
of G. As is well-known, L(G) is a factor if and only if G is icc, i.e., every nontrivial 
conjugacy class in G is infinite. The twisted version of this fact, which is due to Kleppner 
[30], is as follows. An element g ∈ G is called σ-regular if σ(g, h) = σ(h, g) whenever 
h ∈ G and gh = hg. As σ-regularity is a property of conjugacy classes, it makes sense 
to say that (G, σ) satisfies Kleppner’s condition if there is no nontrivial finite σ-regular 
conjugacy class in G. As shown in [30], L(G, σ) is a factor if and only if (G, σ) satisfies 
Kleppner’s condition. It can also be shown that this is equivalent to C∗

r (G, σ) having a 
trivial center (see [37, Theorem 2.7]).

The pair (G, σ) is said to be C∗-simple (resp. to have the unique trace property) when 
C∗

r (G, σ) is simple (resp. has a unique tracial state). Any pair satisfying one of these 
conditions must necessarily satisfy Kleppner’s condition, but the converse implications 
do not always hold. If G is C∗-simple, then, as shown in [10], (G, σ) is C∗-simple and 
has the unique trace property. We refer to [7] for other examples of pairs satisfying one 
or both of these conditions.

A large class of amenable groups for which C∗-simplicity (resp. the unique trace 
property) of (G, σ) is known to be equivalent to Kleppner’s condition being satisfied is 
the class of FC-hypercentral groups, i.e., groups having no icc quotient group other than 
the trivial one, cf. [6] and references therein. This class contains all abelian groups, all 
FC-groups, all finitely generated groups having polynomial growth and, more generally, 
all virtually nilpotent groups. Countable FC-hypercentral groups have recently been 
characterized as groups with the Choquet-Deny property [16], and as strongly amenable 
groups [17].

3. The relative Kleppner condition

Let H be a subgroup of G. We will often write H ≤ G to indicate this. The H-
conjugacy class of g in G is defined as

gH := {hgh−1 : h ∈ H}.

Thus gH is the orbit of g under the action of H on G by conjugation, and we have that 
|gH | =

[
H : CH(g)

]
, where CH(g) := {h ∈ H : hg = gh} is the centralizer of g in H.

We recall that G is said to be an icc group relatively to H if every nontrivial H-
conjugacy class in G is infinite. We will denote the centralizer of H in G by CG(H). 
Thus, CG(H) = {g ∈ G : |gH | = 1}. Similarly, we define the FC-centralizer of H in G
as the subgroup of G given by

FCG(H) = {g ∈ G : |gH | < ∞}.

Clearly, CG(H) ⊆ FCG(H), and saying that G is icc relatively to H means precisely 
that FCG(H) is trivial.
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Example 3.1. Let H, K be groups and assume that α : K → Aut(H) is an action of K
on H by automorphisms. Let G = H �K denote the associated semidirect product. As 
usual, we consider H as a normal subgroup of G and K as a subgroup of G, so that 
H ∩ K = {e} and αk(h) = khk−1 for all h ∈ H, k ∈ K. Then we have that G is icc 
relatively to H if and only if H is icc and α is outer, i.e., αk is an outer automorphism of 
H for each k ∈ K \ {e}. Indeed, if H is icc and α is outer, then using [4, Lemma 3.4] it 
is not difficult to deduce that G is icc relatively to H. Alternatively, one may check that 
CG(H) is trivial and apply Proposition 3.3. The converse implication is straightforward. 
On the other hand, G is icc relatively to K if and only if K is icc and {αk(h) : k ∈ K}
is infinite for every h ∈ H \ {e}. The reader should have no trouble in verifying this 
assertion.

Lemma 3.2. Assume H is icc and normal in G. Then FCG(H) = CG(H).

Proof. Since H is icc, we have that FCG(H) ∩H = {e}. Let g ∈ FCG(H) and k ∈ gH . 
Then kH = gH , so k ∈ FCG(H). Hence g−1k ∈ FCG(H). But, since H is normal, 
g−1k ∈ H. Thus, g−1k = e, i.e., k = g. This means that |gH | = 1, i.e., g ∈ CG(H). �

Using this lemma, we immediately get:

Proposition 3.3. If H is normal in G, then G is icc relatively to H if and only if H is 
icc and CG(H) is trivial.

The condition FCG(H) = CG(H) is trivially satisfied when H is contained in the 
center of G. It is also satisfied in some other situations.

Example 3.4. Let H ≤ G and assume that H has no nontrivial finite quotient, or that H
is an R-group (meaning that if h1, h2 ∈ H are such that hn

1 = hn
2 for some n ∈ N, then 

h1 = h2). Then FCG(H) = CG(H).
Indeed, suppose (for contradiction) that FCG(H) 	= CG(H). Then there exists g ∈

G \ {e} such that

1 < |gH | = [H : CH(g)] < ∞. (5)

Thus, H has a proper subgroup of finite index, and therefore a normal proper subgroup 
of finite index (just take the normal core). Hence H has a nontrivial finite quotient. 
Moreover, (5) gives that there must exist some h ∈ H \ {e} such that hgh−1 	= g. It also 
implies that we must have hngh−n = g for some n ∈ N, that is hn = ghng−1 = (ghg−1)n. 
So H is not an R-group.

All torsion-free, locally nilpotent groups are known to be R-groups (see for example 
[34, 2.1.2]). It is also known that every group having a bi-invariant total order is an 
R-group (see e.g. [27, Lemma 7.7]). Combining this with [27, Theorem 7.8] one deduces 
that all pure braid groups are also R-groups.
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The following definition was given in [7] in the case where H is normal, but it makes 
sense without this assumption.

Definition 3.5. An element g ∈ G is said to be σ-regular w.r.t. H if σ(g, h) = σ(h, g)
whenever h ∈ H and gh = hg.

In other words, g ∈ G is σ-regular w.r.t. H if and only if σ̃(h, g) = 1 (resp. σ̃(g, h) = 1) 
whenever h ∈ H and gh = hg. It follows from the argument given in the proof of [7, 
Lemma 4.4] that σ-regularity w.r.t. H is a property of H-conjugacy classes. Also, if σ′ is 
a two-cocycle on G which is similar to σ, then it is easy to check that g ∈ G is σ-regular 
w.r.t. H if and only if it is σ′-regular w.r.t. H. The twisted analogue of G being icc 
relatively to H is as follows.

Definition 3.6. Let H ≤ G. Then (H ≤ G, σ) is said to satisfy the relative Kleppner 
condition if every nontrivial H-conjugacy class in G that is σ-regular w.r.t. H is infinite.

Clearly, this property depends on σ only up to similarity, and (H ≤ G, σ) automati-
cally satisfies the relative Kleppner condition whenever G is icc relatively to H. Also, if 
(H ≤ G, σ) satisfies the relative Kleppner condition, then both (H, σ) and (G, σ) satisfy 
Kleppner’s condition. The converse implication does not necessarily hold, even if H is 
normal in G and σ is trivial. Indeed, if G = H ×K where both H and K are icc groups 
and K is nontrivial, then G is icc, but not icc relatively to H.

Remark 3.7. The reader should be aware of the discrepancy between Definition 3.6 and 
the relative Kleppner condition introduced in [7, Definition 4.5], where only H-conjugacy 
classes in G \H are involved; the difference is whether or not the assumption that (H, σ)
satisfies Kleppner’s condition is part of the definition: in this paper, it is.

Remark 3.8. If H ≤ G is such that FCG(H) = CG(H), then (H ≤ G, σ) satisfies the 
relative Kleppner condition if and only if for every g ∈ CG(H) \ {e}, there exists some 
h ∈ H such that σ(g, h) 	= σ(h, g).

When H is a normal subgroup of G, one may wonder if the relative Kleppner property 
for (H ≤ G, σ) can be characterized in a way similar to the one obtained in Proposi-
tion 3.3 when σ is trivial. This is a nontrivial problem in general, but we will provide a 
positive answer for a large class of normal subgroups in Theorem 3.15.

We define

Cσ
G(H) : = {g ∈ G : |gH | = 1 and g is σ-regular w.r.t. H}

= {g ∈ CG(H) : σ̃(g, h) = 1 for all h ∈ H}.

Using (3), one readily checks that Cσ
G(H) is a subgroup of CG(H). Moreover, if H is 

normal in G, then so is Cσ
G(H). Next, we define
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FCσ
G(H) : = {g ∈ G : |gH | < ∞ and g is σ-regular w.r.t. H}

= {g ∈ FCG(H) : g is σ-regular w.r.t. H}.

Clearly, Cσ
G(H) ⊆ FCσ

G(H), and (H ≤ G, σ) satisfies the relative Kleppner condition 
if and only if FCσ

G(H) is trivial. If σ is nontrivial, then FCσ
G(H) is not necessarily a 

subgroup of G. However, the following two properties hold.

Lemma 3.9. FCσ
G(H) is closed under the inverse operation.

Proof. Let g ∈ FCσ
G(H). Then g ∈ FCG(H), so g−1 ∈ FCG(H). Assume that h ∈ H

commutes with g−1. Then h also commutes with g, so σ̃(g, h) = 1. Therefore, using (3), 
we obtain

1 = σ̃(g−1g, h) = σ̃(g−1, h)σ̃(g, h) = σ̃(g−1, h).

This shows that g−1 is σ-regular w.r.t. H. Thus, g−1 ∈ FCσ
G(H). �

Lemma 3.10. Let r ∈ N and suppose that g1, . . . , gr ∈ FCσ
G(H). Then there exists an 

n ∈ N such that (g1 · · · gr)mn ∈ FCσ
G(H) for all m ∈ N.

Proof. Let g, k ∈ FCσ
G(H). Since FCG(H) is a group, we have that (gk)n ∈ FCG(H)

for every n ≥ 1. Set R := CH(g) ∩ CH(k) = CH({g, k}), and for each n ≥ 1, set 
Qn := CH((gk)n).

Clearly, R is contained in Qn for every n, and it has finite index in H since it is an 
intersection of finite index subgroups. Moreover, if m divides n, then Qm ⊆ Qn, so

[Q1 : R] ≤ [Qm : R] ≤ [Qn : R] ≤ [H : R] < ∞.

It follows from (3) that

σ̃(xy, (gk)n) = σ̃(x, (gk)n) σ̃(y, (gk)n)

for all x ∈ G and y ∈ Qn. In particular, for every n ≥ 1, the map νn : Qn → T given by 
x �→ σ̃(x, (gk)n) is a homomorphism. Define

κ := max{[Qn : R] : n ≥ 1},
� := min{n : [Qn : R] = κ}.

We note that [Qn : R] = κ and Qn = Q� whenever n is a multiple of �, since we then 
have that

κ ≥ [Qn : R] = [Qn : Q�] [Q� : R] = [Qn : Q�]κ ≥ κ.
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By applying (4) repeatedly, we get that the homomorphism ν� : Q� → T maps R to {1}. 
Indeed, for every y ∈ R, we have σ̃(y, g) = σ̃(y, k) = 1, hence

σ̃(y, gk) = σ̃(y, g)σ̃(y, k) = 1,

and therefore

ν�(y) = σ̃(y, (gk)�) = (σ̃(y, gk))� = 1.

Since [Q� : R] = κ, this means that the image of ν� is a finite subgroup of T with at most 
κ elements. Hence, for each m ≥ 1 and x ∈ Qmκ� = Q�, applying again (4) repeatedly, 
we get that

σ̃(x, (gk)mκ�) = σ̃(x, (gk)�)mκ = (ν�(x))mκ = (ν�(x)κ)m = 1.

In other words, σ(x, (gk)mκ�) = σ((gk)mκ�, x) for every x ∈ H which commutes with 
(gk)mκ�, i.e., (gk)mκ� is σ-regular w.r.t. H. Thus, (gk)mκ� ∈ FCσ

G(H) for all m ≥ 1.
This shows that the conclusion holds when r = 2. It also holds if r = 1 (by setting 

g2 := e). The proof when r > 2 proceeds in essentially the same way, now with R :=
∩r
j=1CH(gj) and Qn = CH((g1 · · · gr)n). �
We recall that the FC-center FC(G) of G consists of the elements of G having a 

finite G-conjugacy class. In other words, FC(G) = FCG(G). The equivalence between 
conditions (i) and (ii) in the following proposition is pointed out by Connell in [14, 
p. 675].

Proposition 3.11. The following conditions are equivalent:

(i) G has no finite normal subgroup except {e}.
(ii) The FC-center of G is a torsion-free group.
(iii) The FC-center of G is a torsion-free abelian group.

Proof. The equivalences between (i), (ii), and (iii) can be deduced from e.g. [41, Theo-
rem 4.32]. Indeed, assume that there exists some r ∈ FC(G) \ {e} having torsion. Then 
the normal subgroup N of G generated by the G-conjugacy class rG is contained in 
FC(G). Hence, N is locally finite by [41, Theorem 4.32, ii)]. Since N is finitely gener-
ated, this means that it is finite. This shows that (i) ⇒ (ii). Moreover, if r, s ∈ FC(G), 
then [41, Theorem 4.32, ii)] also gives that rsr−1s−1 is a torsion element of FC(G). So 
if (ii) holds, then we get that rs = sr. Thus, (ii) ⇒ (iii), and the converse implication 
is trivial. Finally, assume that G has a nontrivial finite normal subgroup N . Then N
is contained FC(G). Since N is finite, we get that FC(G) contains nontrivial torsion 
elements. This shows that (ii) ⇒ (i). �
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Connell calls the group G prime whenever condition (i) (or (ii)) holds, and shows in 
[14, Theorem 8] that G is prime if and only if the group algebra C[G] is prime. We will 
adopt his terminology.

Definition 3.12. The group G is said to be prime when it satisfies any of the equivalent 
conditions in Proposition 3.11.

Clearly, every icc group and every torsion-free group is prime. An R-group (cf. Ex-
ample 3.4) is prime if and only if its center is torsion-free. As shown by Gelander and 
Glasner [19, Theorem 1.15], a countable non-elementary convergence group (e.g., a sub-
group of a Gromov hyperbolic group, or a Kleinian group) is prime if and only if it 
admits a faithful primitive action on a set.

Our next result is a twisted analogue of Lemma 3.2 in the case where H is prime.

Lemma 3.13. Let H be a normal subgroup of G. Assume that H is prime and that (H, σ)
satisfies Kleppner’s condition. Then

Cσ
G(H) = FCσ

G(H).

Proof. Suppose that g ∈ FCσ
G(H) and k ∈ gH . Then k ∈ FCσ

G(H), and g−1 ∈ FCσ
G(H)

by Lemma 3.9. So Lemma 3.10 gives that (g−1k)n is σ-regular w.r.t. H for some n ≥ 1. 
Moreover, g−1k ∈ H (since H is normal and k = hgh−1 for some h ∈ H). As (g−1k)H is 
finite, we get that g−1k ∈ FC(H), hence that (g−1k)n ∈ FC(H). Since (H, σ) satisfies 
Kleppner’s condition, this means that (g−1k)n = e. As H is assumed to be prime, FC(H)
is torsion-free, so we must have g−1k = e, that is, k = g. This shows that |gH | = 1. Hence, 
FCσ

G(H) = Cσ
G(H). �

Remark 3.14. When Cσ
G(H) = FCσ

G(H), e.g., when H satisfies the assumptions in 
Lemma 3.13, then by modifying the argument of Kleppner in [30, Lemma 4], one may de-
duce that C∗

r (H, σ)′∩C∗
r (G, σ) = C∗

r (Cσ
G(H), σ) and L(H, σ)′∩L(G, σ) = L(Cσ

G(H), σ).

As an immediate consequence of Lemma 3.13, we get:

Theorem 3.15. Let H be a normal subgroup of G and assume that H is prime. Then (H ≤
G, σ) satisfies the relative Kleppner condition if and only if (H, σ) satisfies Kleppner’s 
condition and Cσ

G(H) is trivial.

4. Irreducibility and primeness

Let H be a subgroup of G. We will denote the restriction of σ to H ×H by the same 
symbol σ. It is well-known that C∗

r (H, σ) (resp. L(H, σ)) may be identified with the 
C∗-subalgebra of C∗

r (G, σ) (resp. the von Neumann subalgebra of L(G, σ)) generated by 
λσ(H), cf. [47, Subsection 6.46].



E. Bédos, T. Omland / Journal of Functional Analysis 284 (2023) 109795 11
The following two lemmas are straightforward generalizations of [37, Lemmas 2.2 
and 2.3] (the assumption that H is normal is not used in the proof of these two results).

Lemma 4.1. Let H ≤ G, T ∈ L(G, σ) and set fT = Tδe ∈ �2(G). Then the following 
conditions are equivalent:

(i) T belongs to L(H, σ)′ ∩ L(G, σ).
(ii) fT (hgh−1) = σ̃(h, g)fT (g) for all h ∈ H and g ∈ G.

Moreover, fT can be nonzero only on the finite H-conjugacy classes.

Lemma 4.2. Let H ≤ G and C be an H-conjugacy class in G. Then the following condi-
tions are equivalent:

(i) C is σ-regular w.r.t. H.
(ii) There is a function f : G → C satisfying:

1. f(g) 	= 0 for all g ∈ C.
2. f(hgh−1) = σ̃(h, g)f(g) for all g ∈ C and all h ∈ H.

Moreover, f can be chosen in �2(G) if and only if C is finite.

The twisted analogue of [42, Proposition 5.1] is the following:

Proposition 4.3. Let H ≤ G. Then the following assertions are equivalent:

(i) (H ≤ G, σ) satisfies the relative Kleppner condition.
(ii) L(H, σ)′ ∩ L(G, σ) = C1, i.e., the inclusion L(H, σ) ⊆ L(G, σ) is irreducible.
(iii) C∗

r (H, σ)′ ∩ C∗
r (G, σ) = C1, i.e., the inclusion C∗

r (H, σ) ⊆ C∗
r (G, σ) is irreducible.

Moreover, if G is countable, then L(H, σ) ⊆ L(G, σ) is C∗-irreducible if and only if 
(H ≤ G, σ) satisfies the relative Kleppner condition and [G : H] < ∞.

Proof. (i) =⇒ (ii) follows readily from Lemmas 4.1 and 4.2.
(ii) =⇒ (iii) is obvious.
(iii) =⇒ (i): If there is a finite nontrivial H-conjugacy class C in G that is σ-regular 

w.r.t. H, then Lemma 4.2 ensures that there exists a function f : C → C such that ∑
g∈C f(g)λσ(g) is nonscalar and belongs to C∗

r (H, σ)′ ∩ C∗
r (G, σ).

Finally, assume that G is countable. In view of the equivalence of (i) and (ii), we have 
to show that L(H, σ) ⊆ L(G, σ) is C∗-irreducible if and only if L(H, σ) ⊆ L(G, σ) is 
irreducible and [G : H] < ∞. We may then assume that both L(H, σ) and L(G, σ) are 
separable II1-factors. Then the desired equivalence follows from [42, Theorem 4.4] (which 
Rørdam attributes to Pop and Popa), taking into account that it is well-known that the 
Jones index [L(G, σ) : L(H, σ)] is equal to [G : H]. �
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For regular irreducible inclusions of twisted group von Neumann algebras, intermedi-
ate von Neumann algebras have a particularly simple description:

Proposition 4.4. Assume that H is normal in G and (H ≤ G, σ) satisfies the relative 
Kleppner condition, i.e., the inclusion L(H, σ) ⊆ L(G, σ) is irreducible. Then the map 
Γ �→ L(Γ, σ) gives a bijective correspondence between groups Γ satisfying H ≤ Γ ≤ G, 
and von Neumann algebras N satisfying L(H, σ) ⊆ N ⊆ L(G, σ).

Proof. This result could be proven by using results from [23] or [11], or by decomposing 
L(G, σ) as a twisted crossed product and applying [24, Lemma 3.3]. For the ease of the 
reader, we sketch a direct proof, close in spirit to the proof of [13, Corollary 4].

Clearly, if H ≤ Γ ≤ G, then NΓ := L(Γ, σ) is a subfactor of L(G, σ) containing 
L(H, σ). Conversely, let N be a von Neumann algebra satisfying L(H, σ) ⊆ N ⊆ L(G, σ), 
and let EN

τ denote the faithful normal conditional expectation from L(G, σ) onto N
associated to τ . We note that for any g ∈ G, we have that λσ(g)∗EN

τ (λσ(g)) ∈ C1.
Indeed, let x ∈ L(H, σ). Then αg(x) := λσ(g)xλσ(g)∗ ∈ L(H, σ) (because H is normal 

in G), so we get

αg(x)Eτ
N (λσ(g)) = Eτ

N (αg(x)λσ(g)) = Eτ
N (λσ(g)x) = Eτ

N (λσ(g))x.

This implies that

xλσ(g)∗Eτ
N (λσ(g)) = λσ(g)∗Eτ

N (λσ(g))x.

Thus we get that λσ(g)∗Eτ
N (λσ(g)) ∈ L(H, σ)′ ∩ L(G, σ) = C1, as asserted.

Now, set ΓN := {g ∈ G : λσ(g) ∈ N}. Then ΓN is easily seen to be a subgroup of G
containing H, and the observation above gives that EN

τ (λσ(g)) = 0 whenever g /∈ ΓN . 
This readily implies that EN

τ maps L(G, σ) into L(ΓN , σ), hence that

N = Eτ
N (L(G, σ)) ⊆ L(ΓN , σ) ⊆ N.

Thus N = L(ΓN , σ) = NΓN
. This shows that the map Γ �→ NΓ is surjective. To see that 

it is injective, it suffices to show that Γ = ΓNΓ whenever H ≤ Γ ≤ G. By definition, the 
inclusion ⊆ holds. On the other hand, let g ∈ ΓNΓ , i.e., g ∈ G and λσ(g) ∈ NΓ = L(Γ, σ). 
Then we have

δg = λσ(g)δe ∈ L(Γ, σ)δe ⊆ {ξ ∈ �2(G) : ξ(s) = 0 for all s ∈ G \ Γ},

which is possible only if g ∈ Γ. �
Remark 4.5. The assumption in Proposition 4.4 that H is normal can not be removed. 
This can be seen by using an observation due to Jiang in [24, Section 4]. Let K be an 
infinite simple group, and set G := K×K and H = {(k, k) : k ∈ K}. Then H is a maximal 
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subgroup of G, and as shown by Jiang, L(H) is not maximal in L(G), i.e., there exists 
a von Neumann subalgebra N of L(G) containing L(H) such that L(H) 	= N 	= L(G). 
Since K is icc, it is easy to verify that G is icc relatively to H.

Recall that a C∗-algebra is said to be prime if nonzero ideals have nonzero intersec-
tion. As shown in [37, Theorem 2.7], (G, σ) satisfies Kleppner’s condition if and only 
if C∗

r (G, σ) is prime, if and only if C∗
r (G, σ) has trivial center. In this connection, we 

note that if B ⊆ A is a unital inclusion of C∗-algebras, then the following conditions are 
equivalent:

(i) The inclusion B ⊆ A is irreducible.
(ii) Every C∗-algebra C satisfying B ⊆ C ⊆ A has trivial center.

Indeed, if (i) holds and C is an intermediate C∗-algebra, then C ′ ∩ C ⊆ B′ ∩ A = C1. 
Conversely, if (i) does not hold, and we choose a nonscalar a ∈ B′∩A, then the C∗-algebra 
C generated by B and a has a nontrivial center.

Using Proposition 4.3 we get the following generalization:

Corollary 4.6. The following conditions are equivalent:

(i) (H ≤ G, σ) satisfies the relative Kleppner condition.
(ii) Every C∗-algebra A satisfying C∗

r (H, σ) ⊆ A ⊆ C∗
r (G, σ) is prime.

(iii) Every C∗-algebra A satisfying C∗
r (H, σ) ⊆ A ⊆ C∗

r (G, σ) has trivial center.

Proof. (i) =⇒ (ii): Assume (i) holds. Then Proposition 4.3 gives that L(H, σ) ⊆ L(G, σ)
is irreducible. Now, if A is a C∗-algebra satisfying C∗

r (H, σ) ⊆ A ⊆ C∗
r (G, σ), then we 

get L(H, σ) ⊆ A′′ ⊆ L(G, σ), so A′′ is a factor; as is well-known, this implies that A is 
prime. Hence, (ii) holds.

(ii) =⇒ (iii): Since every prime C∗-algebra has trivial center, this is clear.
(iii) =⇒ (i): Assume (iii) holds. Then, as observed above, C∗

r (H, σ) ⊆ C∗
r (G, σ) is 

irreducible. Hence, (i) holds by Proposition 4.3. �
5. C∗-irreducibility and reduced twisted C∗-crossed products

In this section, we assume that (A, G, α, σ) is a unital, discrete, twisted C∗-dynamical 
system, i.e., A is a C∗-algebra with unit 1, G is a discrete group with identity e and 
(α, σ) is a twisted action of G on A, that is, α is a map from G into the group of ∗-
automorphisms of A, and σ is a map from G ×G into the unitary group of A, satisfying

αg ◦ αh = Ad(σ(g, h)) ◦ αgh,

σ(g, h)σ(gh, k) = αg(σ(h, k))σ(g, hk),

σ(g, e) = σ(e, g) = 1,
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for all g, h, k ∈ G, where Ad(v) denotes the (inner) ∗-automorphism of A implemented 
by a unitary v in A.

For simplicity, we will denote the reduced crossed product associated to (A, G, α, σ)
by A �r G. (If confusion may arise, we will denote it by A �(α,σ),r G.) As a C∗-algebra, 
A �r G is generated by (a copy of) A and a family {u(g) : g ∈ G} of unitaries satisfying

αg(a) = u(g)au(g)∗ and u(g)u(h) = σ(g, h)u(gh)

for all g, h ∈ G and a ∈ A. Moreover, there exists a faithful conditional expectation 
E : A �r G → A such that E(u(g)) = 0 for all g ∈ G, g 	= e.

We recall that (α, σ) is said to be outer if αg is outer for each g ∈ G \{e}. The twisted 
version of [42, Theorem 5.8] is as follows:

Theorem 5.1. The following conditions are equivalent:

(i) A ⊆ A �r G is C∗-irreducible.
(ii) A is simple and (α, σ) is outer.
(iii) A is simple and A′ ∩ (A �r G) = C1.

Moreover, if A has the Dixmier property, then any of the above conditions implies that 
A ⊆ A �r G has the relative Dixmier property (as defined in [40]).

Proof. (i) =⇒ (iii): Follows from [42, Remark 3.8].
(iii) =⇒ (ii): Same argument as in the proof of [42, Theorem 5.8].
(ii) =⇒ (i): Assume that (ii) holds. As shown in [4, Theorem 3.2], Kishimoto’s result 

that A �r G is simple remains true for twisted actions. In fact, arguing as in the proof of 
[42, Theorem 5.8], one may show that A ⊆ A �rG is C∗-irreducible. Indeed, let B0 denote 
the ∗-algebra generated by A and {u(g) : g ∈ G}, i.e., B0 = Span{au(g) : a ∈ A, g ∈ G}. 
Using [31, Lemma 3.2] (or [35, Lemma 7.1] if A is separable), and the denseness of B0

in A �r G, one deduces that A ⊆ A �r G has the pinching property with respect to E
(cf. [42, Definition 3.13]). The conclusion follows then from [42, Proposition 3.15].

The last statement follows from [40, Corollary 4.1]. �
Cameron and Smith’s result about intermediate C∗-algebras in simple reduced twisted 

C∗-crossed products [12, Theorem 4.4] may now be reformulated as follows.

Theorem 5.2. Assume that A ⊆ A �r G is C∗-irreducible. Then there is a bijective 
correspondence between subgroups Γ of G and C∗-algebras B satisfying A ⊆ B ⊆ A �rG, 
given by

Γ �→ A�r Γ.



E. Bédos, T. Omland / Journal of Functional Analysis 284 (2023) 109795 15
Proof. Since A is simple and (α, σ) is outer by Theorem 5.1, the conclusion follows from 
[12, Theorem 4.4]. �

Assume that H is a normal subgroup of G and set K := G/H. By restricting α to 
H and σ to H ×H, we get a twisted C∗-dynamical system (A, H, α, σ). The associated 
reduced crossed product A �(α,σ),r H may then be identified with the C∗-subalgebra of 
A �(α,σ),r G generated by A and {u(h) : h ∈ H}. We recall from [4, Theorem 2.1] that 
there exists an induced twisted action (β, ω) of K on A �(α,σ),r H such that

(A�(α,σ),r H) �(β,ω),r K � A�(α,σ),r G

under a ∗-isomorphism which maps A �(α,σ),r H onto its canonical copy in A �(α,σ),r G.
Combining this decomposition result with Theorem 5.1 and Theorem 5.2, we obtain:

Theorem 5.3. Let H be a normal subgroup of G. Then the following conditions are equiv-
alent:

(i) A �r H ⊆ A �r G is C∗-irreducible.
(ii) A �r H is simple and the induced twisted action of G/H on A �r H is outer.
(iii) A �r H is simple and (A �r H)′ ∩ (A �r G) = C1.

Moreover, if A �r H ⊆ A �r G is C∗-irreducible, then there is a bijective correspondence 
between groups Γ satisfying H ≤ Γ ≤ G, and C∗-algebras B satisfying A �r H ⊆ B ⊆
A �r G, given by

Γ �→ A�r Γ.

In turn, combining this result with [4, Lemmas 3.3 and 3.4], we obtain the following 
strengthening of [4, Theorem 3.5] (which only asserts the simplicity of A �r G):

Theorem 5.4. Let H be a normal subgroup of G, and assume that the following conditions 
are satisfied:

• A �r H is simple.
• A has a faithful G-invariant state.
• H is icc and CG(H) is trivial (i.e., G is icc relatively to H by Proposition 3.3).

Then A �r H ⊆ A �r G is C∗-irreducible.

Remark 5.5. The assumption in Theorem 5.4 that A has a faithful G-invariant state is 
of a technical nature for the proof of [4, Lemmas 3.3] to go through, and it might be 
redundant. Anyhow, it is for example satisfied when A has a unique faithful tracial state.
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A noteworthy consequence of Theorem 5.4 is:

Corollary 5.6. Let H be a normal subgroup of G and assume that the following conditions 
are satisfied:

• A is H-simple (i.e., the only H-invariant ideals of A are {0} and A).
• A has a faithful G-invariant state.
• H is C∗-simple and CG(H) is trivial.

Then A �r H ⊆ A �r G is C∗-irreducible.

Proof. As A is H-simple and H is C∗-simple, we get from [10, Corollary 4.4] that A �rH

is simple. As any C∗-simple group is icc, we can apply Theorem 5.4. �
As will be seen in Theorem 6.4, if H is normal in G, then H is C∗-simple and CG(H)

is trivial if and only if H ≤ G is C∗-irreducible.

6. C∗-irreducibility and reduced twisted group C∗-algebras

We recall that G is a discrete group, H is a subgroup of G, and σ is a two-cocycle 
on G.

Definition 6.1. We will say that (H ≤ G, σ) is C∗-irreducible if C∗
r (H, σ) ⊆ C∗

r (G, σ) is 
C∗-irreducible.

If σ′ is a two-cocycle on G which is similar to σ, then it is clear that the canonical 
∗-isomorphism Φ: C∗

r (G, σ′) → C∗
r (G, σ) maps C∗

r (H, σ′) onto C∗
r (H, σ), and it therefore 

follows that (H ≤ G, σ′) is C∗-irreducible if and only if (H ≤ G, σ) is C∗-irreducible.
When H is normal in G, C∗-irreducibility of (H ≤ G, σ) can be characterized as 

follows:

Theorem 6.2. Assume H is normal in G. Then the following conditions are equivalent:

(i) (H ≤ G, σ) is C∗-irreducible.
(ii) (H, σ) is C∗-simple and (H ≤ G, σ) satisfies the relative Kleppner condition.

Both these conditions are satisfied if the following holds:

(iii) C∗
r (H, σ) ⊆ C∗

r (G, σ) has the relative Dixmier property.

Moreover, if (H, σ) has the unique trace property, then all three conditions are equivalent.



E. Bédos, T. Omland / Journal of Functional Analysis 284 (2023) 109795 17
Finally, if (H ≤ G, σ) is C∗-irreducible, then the map Γ �→ C∗
r (Γ, σ) gives a bijective 

correspondence between groups Γ satisfying H ≤ Γ ≤ G, and C∗-algebras B satisfying 
C∗

r (H, σ) ⊆ B ⊆ C∗
r (G, σ).

Proof. The equivalence between (i) and (ii) follows from Theorem 5.3 in the case where 
A = C, in combination with Proposition 4.3. The implication (iii) =⇒ (i) is a consequence 
of [42, Proposition 3.12]. If (H, σ) has the unique trace property, then (ii) =⇒ (iii) follows 
from [40, Examples 4.3]. Indeed, the observation made there also works in the twisted 
case, by decomposing C∗

r (G, σ) as a twisted crossed product C∗
r (H, σ) �(β,ω),r (G/H)

and noticing that the twisted action (β, ω) of G/H is then outer by Theorem 5.3. The 
last assertion follows from Theorem 5.3 �
Corollary 6.3. Let H be a normal subgroup of G, and assume H is FC-hypercentral or 
C∗-simple. Then the following conditions are equivalent:

(i) (H ≤ G, σ) is C∗-irreducible.
(ii) (H ≤ G, σ) satisfies the relative Kleppner condition.
(iii) C∗

r (H, σ) ⊆ C∗
r (G, σ) has the relative Dixmier property.

Proof. As shown in [6, Theorem 3.1], if H is FC-hypercentral, then (H, σ) is C∗-simple if 
and only if (H, σ) has the unique trace property, if and only if (H, σ) satisfies Kleppner’s 
condition. On the other hand, if H is C∗-simple, then (H, σ) is C∗-simple and has the 
unique trace property, cf. [10, Corollaries 4.5 and 5.3]. Hence, Theorem 6.2 gives the 
assertion. �

We will obtain a related result involving the twisted centralizer Cσ
G(H) in Corol-

lary 6.10. Breuillard, Kalantar, Kennedy and Ozawa have shown in [8, Theorem 1.4]
that if H is normal in G, then G is C∗-simple if and only if both H and CG(H) are 
C∗-simple. In general, if H is normal in G and G is C∗-simple, then the inclusion H ≤ G

is not necessarily C∗-irreducible (consider for example G = H ×K with H and K both 
C∗-simple). In fact, we have:

Theorem 6.4. Assume H is normal in G. Then the following conditions are equivalent:

(i) H ≤ G is C∗-irreducible.
(ii) H is C∗-simple and G is icc relatively to H.
(iii) H is C∗-simple and CG(H) is trivial.
(iv) C∗

r (H) ⊆ C∗
r (G) has the relative Dixmier property.

(v) H ≤ G is relatively C∗-simple.

Proof. Theorem 6.2 gives that (i) is equivalent to (ii). Since any C∗-simple group is 
icc, the equivalence (ii) ⇐⇒ (iii) follows from Proposition 3.3. Taking into account that 
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H has the unique trace property whenever H is C∗-simple, cf. [8, Theorem 1.3], the 
equivalence between (i) and (iv) follows also from Theorem 6.2. Finally, the equivalence 
(iii) ⇐⇒ (v) is a consequence of [45, Theorem 1.3 and 1.6]. �
Remark 6.5. A subgroup H of G is said to be plump in G if a relative version of Powers’ 
averaging property holds (see [1] and [45, Definition 1.1]). In general, plumpness of H
in G implies C∗-irreducibility of H ≤ G [42, Theorem 5.3], and is equivalent to relative 
C∗-simplicity of H ≤ G when H is normal [45, Theorem 1.6]. It therefore follows from 
Theorem 6.4 that plumpness of H in G is equivalent to C∗-irreducibility of H ≤ G when 
H is normal.

Let Γ be a C∗-simple group, and let K = Aut(Γ) denote the group of all automor-
phisms of Γ. It is shown in [4, Corollary 3.7] that K is C∗-simple too. As Γ has trivial 
center, we may identify Γ with the normal subgroup of K consisting of all inner auto-
morphisms of Γ, and CK(Γ) is then trivial. Theorem 6.4 therefore gives:

Corollary 6.6. Let Γ be a C∗-simple group. Then Γ ≤ Aut(Γ) is C∗-irreducible.

Similarly, if Γ is C∗-simple and we let it act on itself by inner automorphisms, then we 
have that Γ �Γ � Γ ×Γ is C∗-simple, so we get that Γ ×Γ ≤ Γ �Aut(Γ) is C∗-irreducible 
(cf. the proof of [4, Corollary 3.8]).

Corollary 6.7. Assume H is normal in G and H ≤ G is C∗-irreducible. Then (H ≤ G, σ)
is C∗-irreducible.

Proof. By Theorem 6.4, H is C∗-simple and CG(H) is trivial. Using Corollary 5.6 with 
A = C, we get that (H ≤ G, σ) is C∗-irreducible. �
Remark 6.8. When H is not normal in G, the equivalence between (i) and (ii) in Theo-
rem 6.2 does not hold in general, even if σ is trivial. Here is an example where H and G
are both C∗-simple, G is icc relatively to H, but H ≤ G is not C∗-irreducible. Consider

H =
〈[

1 2
0 1

]
,

[
1 0
2 1

]〉
≤ SL(2,Z).

It is well-known that H � F2 (H is sometimes called the Sanov subgroup of SL(2, Z)).
Furthermore, set

K = Z2
�H and G = K ∗ Z,

where H acts on Z2 in the natural way. Then H ≤ K ≤ G, both H and G are C∗-simple, 
but K is not C∗-simple since it contains a nontrivial normal abelian subgroup.

We now check that G is icc relatively to H. Let x = (x1, x2) ∈ Z2 and let u and v be 
the generators of H inside K. Then
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unxu−n = (x1 + 2nx2, x2) and vnxv−n = (x1, x2 + 2nx1),

and it follows that xH = {yxy−1 : y ∈ H} is infinite for all x ∈ Z2 \ {0}. Next, consider 
xy ∈ K where y ∈ H \ {e}. We can always pick w to be one of u, u−1, v, v−1 such that 
wnyw−n has no cancellation for n ≥ 1. Then

|(xy)H | ≥ |{wnxyw−n : n ≥ 1}| = |{wnxw−n · wnyw−n : n ≥ 1}| = ∞.

One checks in a similar way that any word in K and Z, with at least one letter from Z, 
has an infinite conjugacy class w.r.t. H. Thus, gH is infinite for all g ∈ G \ {e}.

Corollary 6.9. Let H be a normal subgroup of G and assume that H is prime. Then 
(H ≤ G, σ) is C∗-irreducible if and only if (H, σ) is C∗-simple and Cσ

G(H) is trivial.

Proof. The assertion follows by combining Theorem 6.2 with Theorem 3.15. �
Corollary 6.10. Let H be a normal subgroup of G.

If H is prime and FC-hypercentral, then (H ≤ G, σ) is C∗-irreducible if and only if 
(H, σ) satisfies Kleppner’s condition and Cσ

G(H) is trivial.
If H is C∗-simple, then (H ≤ G, σ) is C∗-irreducible if and only if Cσ

G(H) is trivial.

Proof. We note that if H is C∗-simple, then H is icc, so H is prime and (H, σ) satisfies 
Kleppner’s condition. Both assertions therefore follow by combining Corollary 6.3 with 
Theorem 3.15. �
7. Some examples

Example 7.1 (Noncommutative tori I). Let θ ∈ R and let Aθ be the associated noncom-
mutative 2-torus, i.e., the universal unital C∗-algebra generated by two unitaries U1, U2
satisfying the relation

U1U2 = ei2πθU2U1

As is well-known, we may assume that Aθ = C∗
r (Z2, σθ), where σθ is the two-cocycle on 

Z2 given by

σθ(x,y) = eiπ θ(x1y2−x2y1)

for all x = (x1, x2), y = (y1, y2) ∈ Z2. Moreover, Aθ is simple if and only if (Z2, σθ)
satisfies Kleppner’s condition, which happens if and only if θ is irrational.

Now, let p, q ∈ N and set Hp,q := pZ × qZ ≤ Z2, Bp,q,θ := C∗
r (Hp,q, σθ). One 

readily checks that Bp,q,θ � Apqθ. Further, we have that the inclusion Bp,q,θ ⊆ Aθ is 
C∗-irreducible if (and only if) θ is irrational.
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Indeed, let θ be irrational. Since Hp,q is abelian, it suffices to show that (Hp,q ≤ Z2, σθ)
satisfies the relative Kleppner condition, cf. Corollary 6.3. Let x = (x1, x2) ∈ Z2. Then 
a short computation gives that x is σθ-regular w.r.t. Hp,q if and only if

θ (qx1m2 − pm1x2) ∈ Z

for all y = (pm1, qm2) ∈ Hp,q, which is clearly possible if and only if x = (0, 0). Thus 
(0, 0) is the only element of Z2 which is σθ-regular w.r.t. Hp,q, and the desired conclusion 
follows. Using the final assertion of Theorem 6.2, we get that there is a one-to-one 
correspondence between intermediate C∗-algebras of Bp,q,θ ⊆ Aθ and subgroups of Zp×
Zq. In particular, there are no strict intermediate C∗-algebras in this inclusion if for 
example p = 1 and q is prime.

Example 7.2 (Noncommutative tori II). Let Θ = (θ1, θ2, θ3) ∈ R3 and let A = AΘ be 
the associated noncommutative 3-torus, i.e., the universal unital C∗-algebra generated 
by three unitaries U1, U2, U3 satisfying the relations

U1U2 = ei2πθ3U2U1, U2U3 = ei2πθ1U3U2, U3U1 = ei2πθ2U1U3 .

Then A is simple if and only if the dimension d(Θ) of Q + θ1Q + θ2Q + θ3Q (as a vector 
space over Q) is 3 or 4 (see e.g. [5]).

Now, let B be the C∗-subalgebra of A generated by U1 and U2. We may then deduce 
from Theorem 6.2 that the following statements are equivalent:

i) B ⊆ A is C∗-irreducible,
ii) θ3 /∈ Q and d(Θ) ∈ {3, 4}.

Indeed, we may assume that A = C∗
r (Z3, σΘ), where σΘ is the two-cocycle on Z3 given 

by

σΘ(x,y) = eiπΘ·(x×y)

for all x, y ∈ Z3, Θ · (x × y) denoting the scalar triple product.
Letting H be the subgroup of Z3 given by H = Z2×{0} = {(y1, y2, 0) : y1, y2 ∈ Z}, we 

have that B = C∗
r (H, σΘ) is isomorphic to the noncommutative 2-torus Aθ3 associated 

to θ3. Thus B is simple if and only if it θ3 /∈ Q.
Since Z3 is abelian, (H ≤ Z3, σΘ) satisfies the relative Kleppner’s condition if and only 

if (0, 0, 0) is the only element of Z3 which is σΘ-regular w.r.t. H. Now, x = (x1, x2, x3) ∈
Z3 is σΘ-regular w.r.t. H if and only if

σΘ(x,y) = σΘ(y,x)
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for all y ∈ H. This is equivalent to ei2πΘ·(x×y) = 1 for all y ∈ H, i.e., Θ · (x × y) ∈ Z

for all y ∈ H. As Θ · (x×y) = y · (Θ ×x), it follows readily that (H ≤ Z3, σΘ) satisfies 
the relative Kleppner’s condition if and only if the only element x of Z3 satisfying

θ2x3 − θ3x2 ∈ Z and θ1x3 − θ3x1 ∈ Z (6)

is x = (0, 0, 0).
Assume now that (H ≤ Z3, σΘ) does not satisfy the relative Kleppner’s condition. 

Using what we just have shown, we can find x = (x1, x2, x3) 	= (0, 0, 0) such that (6)
holds. If x3 	= 0, then we get that θ1, θ2 ∈ SpanQ{1, θ3}, hence that d(Θ) ≤ 2. On the 
other hand, if x3 = 0, then x1 	= 0 or x2 	= 0, and we get that θ3 ∈ Q. This shows that 
Condition ii) does not hold.

Combining this with Theorem 6.2, we get the following chain of implications:

Condition ii) holds ⇒ (H ≤ Z3, σΘ) satisfies the relative Kleppner’s condition

⇒ B ⊆ A is C∗-irreducible

⇒ B and A are simple

⇒ Condition ii) holds,

which proves the asserted equivalence.
When Condition ii) holds, then the last assertion in Theorem 6.2 gives that the in-

termediate C∗-algebras of the inclusion B ⊆ A are the noncommutative tori of the form 
C∗(U1, U2, U n

3 ) for n ∈ N ∪ {0}.
In the case where A is an higher-dimensional noncommutative n-torus (n ≥ 4), and 

B is the C∗-subalgebra of A generated by some of the unitary generators of A, it is not 
easy to describe explicitly when the inclusion B ⊆ A will be C∗-irreducible. We note 
that in such a situation, the necessary assumption that both A and B are simple is not 
sufficient in general. Indeed, if θ and θ′ are irrational numbers, and we set B = Aθ, 
A = Aθ ⊗Aθ′ , then A and B are both simple, but B ⊆ A is not C∗-irreducible.

Example 7.3 (The Heisenberg group). Let G denote the discrete Heisenberg group, i.e., 
G = Z3 as a set, with multiplication given by

(a1, a2, a3)(b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3 + a1b2).

Let σ be a two-cocycle on G. As shown in [38, Proposition 1.1], σ is (up to similarity) 
determined by two parameters γ, θ ∈ [0, 1) such that

σ
(
(a1, a2, a3), (b1, b2, b3)

)
= ei2πγ(b3a1+ 1

2 b2a1(a1−1))ei2πθ(a2(b3+a1b2)+ 1
2a1b2(b2−1))

The restriction of σ to H := {(0, a2, a3) : a2, a3 ∈ Z} � Z2 depends only on θ. It is 
straightforward to check that the H-conjugacy class (a1, a2, a3)H is finite if and only if 
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a1 = 0, i.e., (a1, a2, a3) ∈ H. It follows readily that (H ≤ G, σ) satisfies the relative 
Kleppner condition if and only if θ is irrational. Since H is abelian, Corollary 6.3 gives 
that (H ≤ G, σ) is C∗-irreducible if and only if θ is irrational. In this case, the inter-
mediate algebras of C∗

r (H, σ) ⊆ C∗
r (G, σ) are then classified by N ∪ {0} via the map 

n �→ Cr(Γn, σ), where Γn := {(na1, a2, a3) : a1, a2, a3 ∈ Z} ≤ G.
Alternatively, we may consider Sσ(H) := {h ∈ H : h is σ-regular w.r.t. H}. Since 

H is abelian, we have that (H, σ) satisfies Kleppner’s condition if and only if Sσ(H) is 
trivial. On the other hand, one readily checks that CG(H) = H, so we get that Cσ

G(H) =
Sσ(H). As H is prime and FC-hypercentral, Corollary 6.10 gives that (H ≤ G, σ) is 
C∗-irreducible if and only if Sσ(H) is trivial. Now, a short computation gives that

Sσ(H) = {(0, a2, a3) ∈ H : ei2πθ(a2b3−a3b2) = 1 for all b2, b3 ∈ Z},

which is trivial if and only if θ is irrational, in accordance with what we found above.
Note that C∗

r (H, σ) = C∗(λσ(0, 1, 0), λσ(0, 0, 1)) � Aθ. If γ = 0, then C∗
r (G, σ) �

Aθ �r Z � Aθ � Z for the action of Z on Aθ implemented by the ∗-automorphism of 
Aθ given by conjugation with λσ(1, 0, 0). In the natural action of SL(2, Z) on Aθ, this 

automorphism corresponds to the matrix 

[
1 0
1 1

]
. Actions of Z on Aθ associated to 

other infinite cyclic subgroups of SL(2, Z) are studied in [15, Section 5].

Example 7.4 (The braid group on infinitely many strands). The braid group B∞ on 
infinitely many strands is the group generated by {si}∞i=1 subject to relations

sisi+1si = si+1sisi+1 for all i ≥ 1,

sisj = sjsi when |i− j| ≥ 2.

There is a surjection from B∞ onto the infinite symmetric group S∞, sending the gen-
erator si to the permutation (i, i + 1), and thus s2

i to the identity for every i. The pure 
braid group P∞ is defined as the kernel of the map B∞ → S∞.

It follows from [36, Proof of Theorem 6.2] that P∞ is C∗-simple and B∞ is icc relatively 
to P∞. Hence, P∞ ≤ B∞ is C∗-irreducible by Theorem 6.4, and the intermediate algebras 
C∗

r (P∞) ⊆ B ⊆ C∗
r (B∞) are classified by the subgroups of S∞.

Example 7.5 (Wreath products). Let N and K be nontrivial groups. Recall that the 
restricted wreath product N � K is defined as the semidirect product (

⊕
K N) � K, 

where K acts by (left) translation on the index set K. The unrestricted wreath product 
is defined in a similar way by N �̄K = (

∏
K N) �K. Then the following conditions are 

equivalent:

(i) N is C∗-simple.
(ii) N �K is C∗-simple.



E. Bédos, T. Omland / Journal of Functional Analysis 284 (2023) 109795 23
(iii)
⊕

K N ≤ N �K is C∗-irreducible.
(iv)

⊕
K N ≤ N �̄K is C∗-irreducible.

Indeed, the implications (iv) ⇒ (iii) ⇒ (ii) are trivial and since N is subnormal in N �K
we get (ii) ⇒ (i). Now, assume that (i) holds. Then [45, Theorem 5.6] implies that 

⊕
K N

is relatively C∗-simple in N �̄K, so Theorem 6.4 gives that (iv) holds.
This example is also discussed in [7, Proposition 5.5], where (i) ⇒ (ii) is shown.

Example 7.6. Let G = F2 × Z2 with Z2 = {0, 1}, and let a, b denote the two generators 
of the free group F2. Any element of F2 may be written in an unique way in reduced 
form as

x = am1bn1 · · · amkbnk

for some k ≥ 1, where m1, nk ∈ Z, and m2, . . . , mk, n1, . . . , nk−1 ∈ Z \ {0} if k ≥ 2. 
Define then

θ1(x) :=
k∑

j=1
mj , θ2(x) :=

k∑
j=1

nj and θ3(x) :=
k∑

j=1
(mj + nj).

For j = 1, 2, 3 we may then define a two-cocycle σj on G by

σj

(
(x, k), (y, l)

)
=

{
−1 if k = 1 and θj(y) is odd,
1 otherwise

for (x, k), (y, k) ∈ F2 × Z2. (One may show that every two-cocycle on G which is not 
similar to 1 is similar to σj for some j ∈ {1, 2, 3}, but we do not need this.)

Set H = F2 × {0}. Then H is C∗-simple, and CG(H) = {e} × Z2. For y ∈ F2 and 
j ∈ {1, 2, 3}, we have

σj

(
(e, 1), (y, 0)

)
=

{
−1 if θj(y) is odd,
1 otherwise,

while σj

(
(y, 0), (e, 1)

)
= 1.

Thus (e, 1) is not σj-regular w.r.t. H. It follows that Cσj

G (H) = {(e, 0)} for j = 1, 2, 3. 
Hence, Corollary 6.10 gives that (H ≤ G, σj) is C∗-irreducible for j = 1, 2, 3.

8. C∗-irreducibility and groups acting on trees

Let T be a tree and ∂T its boundary [43]. An automorphism g ∈ Aut(T ) is elliptic
if it fixes a vertex of T , is an inversion if it does not fix any vertices, but permutes two 
adjacent vertices, i.e., inverts an edge, and is called hyperbolic if it is not elliptic nor 
an inversion. The fixed point set T g of an elliptic automorphism g of T is a (possibly 
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finite) subtree of T . An hyperbolic automorphism h does not fix any vertices, but has 
an axis Lh, which is an infinite linear subtree on which h acts by translation. Moreover, 
h admits exactly two fixed points in T ∪ ∂T , namely the two points in ∂T arising from 
the h-invariant axis Lh. Two hyperbolic automorphisms are said to be transverse if they 
have disjoint fixed point sets. We refer to [43, Proposition 6.4.24] for details.

An action of a discrete group G on a tree T is minimal if T does not contain any 
proper G-invariant subtrees, and of general type (or strongly hyperbolic [20]) if its image 
in Aut(T ) contains two transverse hyperbolic automorphisms of T . The following result 
can be found in [32, Proposition 3]; see [18, Lemma 2.10] for a related result.

Lemma 8.1. Let G act faithfully on a tree T and assume that the action is minimal and 
of general type. Let H be a nontrivial normal subgroup of G. Then the action of H on 
T is also minimal and of general type.

The following consequence of Lemma 8.1 is surely part of the folklore, but we include 
a proof for completeness.

Proposition 8.2. Let G act faithfully on a tree T and assume that the action is minimal 
and of general type. Let H be a nontrivial normal subgroup of G. Then the centralizer 
CG(H) of H in G is trivial.

Proof. Since the action of H on T is of general type by Lemma 8.1, H contains a 
hyperbolic element h. Let g ∈ CG(H). Then gh = hg, and the axis Lh is invariant under 
the action of g. Indeed, we have gLh = ghLh = hgLh, so gLh is another infinite h-
invariant axis, and so gLh = Lh. Thus Lh is invariant under the action of CG(H) on T . 
The action of G on T being of general type, we have Lh 	= T . Thus the action of CG(H)
on T is not minimal. Since H is normal in G, CG(H) is normal in G too, so Lemma 8.1
gives that CG(H) must be trivial. �

If G is the free product of two groups not both of order 2 and H is a normal subgroup 
of G, then [45, Theorem 5.2] says that H is relatively C∗-simple in G, hence that H ≤ G

is C∗-irreducible by Theorem 6.4. This may be generalized as follows.

Theorem 8.3. Assume G has a faithful, minimal action of general type on a tree T , and 
let H be a nontrivial normal subgroup of G. Then the following conditions are equivalent:

(i) G is C∗-simple.
(ii) H is C∗-simple.
(iii) H ≤ G is C∗-irreducible.
(iv) (H ≤ G, σ) is C∗-irreducible for every two-cocycle σ on G.
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Proof. Since CG(H) is trivial by Proposition 8.2, (i) is equivalent to (ii) by [8, Theorem 
1.4], while Theorem 6.4 gives that (ii) and (iii) are equivalent. The equivalence between 
(iii) and (iv) follows from Corollary 6.7. �

We recall that an action of a group G on a set X is called strongly faithful if for 
any finite subset F ⊆ G \ {e}, there exists x ∈ X such that fx 	= x for all f ∈ F . 
Also, an action of G on a topological space Y is said to be topologically free if the set 
Y g := {y ∈ Y : gy = y} has empty interior for each g ∈ G \ {e}. Now, consider a 
minimal action of G of general type on a tree T . As shown in [9, Proposition 3.8], such 
an action is strongly faithful if and only if the induced action of G on ∂T (equipped with 
the relative shadow topology) is topologically free, if and only if the induced action of 
G on the closure ∂T (of ∂T in T ∪ ∂T w.r.t. the shadow topology) is topologically free. 
Moreover, G is C∗-simple (in fact a Powers group) when one of these conditions holds. 
Hence, Theorem 8.3 gives:

Corollary 8.4. Assume that G has a strongly faithful, minimal action of general type on 
a tree T , and let H be a nontrivial normal subgroup of G. Then H ≤ G is C∗-irreducible. 
Moreover, (H ≤ G, σ) is C∗-irreducible for every two-cocycle σ on G.

Example 8.5. Let G = A ∗C B be an amalgam of groups which is nondegenerate, i.e., at 
least one of the indices [A : C], [B : C] is strictly larger than 2. Then the action of G on its 
Bass-Serre tree T is minimal and of general type, cf. [20, Proposition 19]. Moreover, [22, 
Proposition 5.3] gives that this action is strongly faithful (equivalently, the action of G
on ∂T is topologically free) whenever the so-called interior group of G, int(G), is trivial. 
We also note that [22, Proposition 3.2] characterizes in several ways when this happens, 
e.g., it is equivalent to require that for every finite subset F of C \{e}, there exists g ∈ G

such that gFg−1 ∩C = ∅. When int(G) is trivial and H is a nontrivial normal subgroup 
of G, we can apply Corollary 8.4 and deduce that (H ≤ G, σ) is C∗-irreducible for any 
two-cocycle σ on G.

We note that if C is trivial, i.e., G = A ∗ B with max{|A|, |B|} ≥ 3, then every 
two-cocycle on G is similar to a two-cocycle of the form σ1 ∗ σ2, where σ1 (resp. σ2) is 
a two-cocycle on A (resp. B), see for instance [37, Section 4] and references therein. It 
is therefore easy to obtain concrete examples (H ≤ A ∗ B, σ) that are C∗-irreducible. 
A natural choice here is to let H be the kernel of the canonical homomorphism from 
A ∗B into A ×B.

Example 8.6. Similarly, let G = HNN(Γ, A, θ) be an HNN-extension which is nonascend-
ing, i.e., we have A 	= G 	= θ(A). Then the action of G on its Bass-Serre tree T is minimal 
and of general type, cf. [20, Proposition 20] (see also [9, Proposition 4.16]). Moreover, 
[9, Proposition 4.18] gives that this action is strongly faithful (equivalently, the action 
of G on ∂T is topologically free) whenever the interior group of G, int(G), is trivial. 
Several characterizations of int(G) being trivial are given in [9, Theorem 4.10], e.g., this 
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happens if and only if for every finite subset F of A \ {e}, there exists g ∈ G such 
that gFg−1 ∩ A = ∅. When int(G) is trivial, we can apply Corollary 8.4 and get that 
(H ≤ G, σ) is C∗-irreducible whenever H is a nontrivial normal subgroup of G and σ is 
a two-cocycle on G.

To illustrate this, let m, n ∈ Z be such that min{|m|, |n|} ≥ 2 and |m| 	= |n|, and 
let G = BS(m, n) = 〈t, b | t−1bmt = bn〉 denote the associated Baumslag-Solitar group, 
which is an HNN-extension with Γ = Z, A = mZ, and θ(mk) = nk for k ∈ Z. Then 
it is well-known that G is C∗-simple (see for example [20, Theorem 3] and [9, Example 
4.21]). Moreover, G, as an HNN-extension, is clearly nonascending, and its interior group 
is trivial. Indeed, the final part of [9, Example 4.21] shows that the so-called quasi-kernel 
K1 of G is trivial, and this is equivalent to int(G) being trivial by [9, Theorem 4.10]. 
Let now ϕ : G → Z be the homomorphism determined by ϕ(t) = 1 and ϕ(b) = 0 and 
set H = SBS(m, n) = kerϕ (as in [20, Corollary 5]). Then we can conclude from the 
previous paragraph that H ≤ G is C∗-irreducible.

If G acts on compact Hausdorff space X in such a way that every orbit is dense 
in X (i.e., the action is minimal) and the weak*-closure of every orbit in the space of 
probability measures on X contains a point mass (i.e., the action is strongly proximal), 
then the action of G is called a boundary action and X is called a G-boundary. Up to G-
equivariant homeomorphism, the Furstenberg boundary ∂FG is the unique G-boundary 
having the universal property that for any G-boundary X, there exists a (unique) G-
equivariant, continuous surjection ∂FG → X. As shown in [25, Theorem 6.2] (see also [8, 
Theorem 3.1]), G is C∗-simple if and only if there exists a topologically free G-boundary, 
if and only if the action of G on ∂FG is free (resp. topologically free).

When a faithful action of G on a tree T is minimal and of general type, then ∂T
is a G-boundary (cf. [9, Lemma 3.5]; see also [33, Proposition 4.26]), and thus also an 
H-boundary for any nontrivial normal subgroup H of G by Lemma 8.1. Corollary 8.4
can therefore also be deduced from the following result for boundary actions, which relies 
heavily on [45, Theorem 1.3] and its proof.

Proposition 8.7. Let H be a nontrivial normal subgroup of G and suppose that there exists 
a topologically free boundary action of G on X which restricts to a boundary action of 
H. Then (H ≤ G, σ) is C∗-irreducible for every two-cocycle σ on G.

Proof. Since X is an H-boundary, there exists an H-equivariant, continuous surjection 
map ∂FH → X. By [8, Lemma 5.2], the action of H on ∂FH extends in a unique 
way to an action of G on ∂FH, so ∂FH is a G-boundary. Further, it follows from [45, 
Corollary 4.3] that the surjection ∂FH → X is G-equivariant. Hence, if g ∈ G is such 
that (∂FH)g has nonempty interior, then Xg has nonempty interior. By assumption, 
this means that g = e. Thus, the action of G on ∂FH is topologically free, and [45, 
Theorem 1.3] gives that H is C∗-simple and CG(H) is trivial. The conclusion follows 
from Theorem 6.4 and Corollary 6.7. �
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9. On C∗-simplicity and normal subgroups

Let H be a normal subgroup of G. As recalled in Section 6, we then have that G is 
C∗-simple if and only if H and CG(H) are both C∗-simple, cf. [8, Theorem 1.4]. It would 
be interesting to know what kind of assumptions are needed to ensure that a twisted 
version of this result holds. Our goal in this section is to prove a result in this direction, 
cf. Corollary 9.7.

Lemma 9.1. Let H be a normal subgroup of G. Assume that H is prime and that (H, σ)
and (Cσ

G(H), σ) both satisfy Kleppner’s condition. Then (G, σ) satisfies Kleppner’s con-
dition.

Proof. Suppose that g ∈ G is σ-regular w.r.t. G and |gG| < ∞. Then g ∈ FCσ
G(H), so 

Lemma 3.13 gives that g ∈ Cσ
G(H). Now, it is clear that g is also σ-regular w.r.t. Cσ

G(H)
and |gCσ

G(H)| < ∞. Since (Cσ
G(H), σ) satisfies Kleppner’s condition, we get that g = e. 

This shows that (G, σ) satisfies Kleppner’s condition. �
Lemma 9.2. Suppose that H is a nontrivial normal subgroup of a FC-hypercentral group 
G. Then H ∩ FC(G) is nontrivial.

Proof. We recall, see for example [41, Section 4.3], that G is FC-hypercentral if and only 
if G is equal to its FC-hypercenter FCH(G), which is defined as follows. Let {Fα}α be 
the ascending series of normal subgroups of G indexed by the ordinal numbers, given 
by F0 = {e}, Fα/Fβ = FC(G/Fβ) if α = β + 1, and Fα =

⋃
β<α Fβ when α is a limit 

ordinal number. This series eventually stabilizes and FCH(G) := limα Fα =
⋃

α Fα.
Now, since G = FCH(G), there is some α such that H ∩Fα = {e} while H ∩Fα+1 	=

{e}. Pick h ∈ H ∩ Fα+1, h 	= e. As H ∩ Fα = {e}, the homomorphism h′ �→ h′Fα from 
H into G/Fα is injective. Also, hFα belongs to FC(G/Fα) since h ∈ Fα+1. We therefore 
get that

|{ghg−1 : g ∈ G}| = |{ghg−1Fα : g ∈ G}| = |{(gFα)hFα(gFα)−1 : g ∈ G}| < ∞.

Hence, h ∈ FC(G). Thus we have e 	= h ∈ H ∩ FC(G). �
Definition 9.3. A subgroup H of G will be said to be σ-regular in G if h ∈ H is σ-regular 
w.r.t. G whenever h is σ-regular w.r.t. H.

Example 9.4. Let θ be irrational, p, q ∈ N, Hp,q = pZ × qZ and σθ be the two-cocycle on 
Z2 defined in Example 7.1. Then Hp,q is σ-regular in Z2. Indeed, y = (0, 0) is the only 
element of Hp,q which is σ-regular w.r.t. Hp,q (because (Hp,q, σθ) satisfies Kleppner’s 
condition), and (0, 0) is obviously σ-regular w.r.t. Z2. The same argument shows that if 
H ≤ G, H is abelian and (H, σ) satisfies Kleppner’s condition, then H is σ-regular in G.
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Example 9.5. Let G = F2×Z2, H = F2×{0} and σj be as in Example 7.6 for j ∈ {1, 2, 3}. 
Then H is not σj-regular in G. Indeed, every (x, 0) ∈ H is σj-regular w.r.t. H (because 
σj restricts to the trivial two-cocycle on H). But if we pick x ∈ F2 such that θj(x) is 
odd, then (x, 1) commutes with (x, 0), and

σj((x, 0), (x, 1)) = 1 	= −1 = σj((x, 1), (x, 0)),

i.e., (x, 0) is not σj-regular w.r.t. G.

It is not difficult to see that if (G, σ) satisfies Kleppner’s condition and H is a σ-
regular subgroup of G having finite index, then (H, σ) satisfies Kleppner’s condition. If 
H is of infinite index, this might not be true. However, we have:

Proposition 9.6. Let G be a FC-hypercentral group and H be a normal subgroup of G. 
Assume that (G, σ) satisfies Kleppner’s condition and that H is prime and σ-regular in 
G. Then (H, σ) satisfies Kleppner’s condition.

Proof. Assume h ∈ H is σ-regular w.r.t. H and hH is finite. Then h is σ-regular w.r.t. G
(since H is σ-regular in G). Let N be the normal subgroup of G generated by h, i.e., the 
subgroup generated by hG.

Note that FC(H) is a characteristic subgroup of H, so it is normal in G (this can 
also be checked directly). It follows that N is contained in FC(H), so N is torsion-free 
(since H is prime). Moreover, using Lemma 9.2, we get that N ∩ FC(G) is nontrivial.

Let y ∈ N ∩ FC(G), y 	= e. Then y can be written as a finite product of elements 
from hG and their inverses, and all these elements clearly belong to FCσ

G(G) = {g ∈
FC(G) : g is σ-regular w.r.t. G}. Thus, by Lemma 3.10, there exists some n ∈ N such 
that yn ∈ FCσ

G(G). As y ∈ N , and N is torsion-free, we can conclude that FCσ
G(G) is 

nontrivial, i.e., (G, σ) does not satisfy Kleppner’s condition. �
Corollary 9.7. Let G be a FC-hypercentral group and H be a normal subgroup. Assume 
that H is prime and σ-regular in G. Consider the following two conditions:

(i) (H, σ) and (Cσ
G(H), σ) are both C∗-simple.

(ii) (G, σ) is C∗-simple.

Then (i) ⇒ (ii). If we also assume that Cσ
G(H) is prime and σ-regular in G, then

(ii) ⇒ (i).

Proof. Assume (i) holds. Then (H, σ) and (Cσ
G(H), σ) both satisfy Kleppner’s condi-

tion, so Lemma 9.1 gives that (G, σ) satisfies Kleppner’s condition. Since G is FC-
hypercentral, we get that (ii) holds.

Next, assume also that Cσ
G(H) is prime and σ-regular in G, and that (ii) holds. Then 

(G, σ) satisfies Kleppner’s condition, so Proposition 9.6 gives that (H, σ) and (Cσ
G(H), σ)
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both satisfy Kleppner’s condition. Since H and Cσ
G(H) are FC-hypercentral (being sub-

groups of G), we get that (H, σ) and (Cσ
G(H), σ) both are C∗-simple. �

Question 9.8. Let H be a normal subgroup of G and consider the following two properties:

(i) (H, σ) and (Cσ
G(H), σ) are both C∗-simple.

(ii) (G, σ) is C∗-simple.

Under which assumptions (other than σ = 1 and those imposed in Corollary 9.7) do we 
have that (i) ⇒ (ii), or that (i) ⇔ (ii)?
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